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ABSTRACT

In this paper we consider a graph G, a partition P = {V1, V2, . . . , Vk}
of V (G) and the generalized complements GP

k and GP
k(i) with respect

to the partition P . We derive conditions to be satisfied by P so that
G commutes with its generalized complements. Apart from the general
characterization, we also obtain conditions on P = {V1, V2, . . . , Vk} so
that G commutes with its generalized complements for certain classes
of graphs namely complete graphs, cycles and generalized wheels. In
the process we obtain a commuting decomposition of regular complete
k-partite graph Kn1,n2,...,nk in terms of a Hamiltonian cycle and its k-
complement. We also get a commuting decomposition of a complete
k-partite graph Kn1,n2,...,nk in terms of a generalized wheel and its k-
complement, where n1, n2, . . . , nk satisfy some conditions.

Keywords: Adjacency matrix, Graphical, Matrix product, k- comple-
ment, k(i)- complement, Commutativity, Graph decompo-
sition.
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1. Introduction

Graphs considered in this paper are simple, undirected, and without self-
loops. Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set
E(G) = {e1, e2, . . . , em}. For any two vertices vi and vj , i 6= j in the graph G,
vi ∼G vj denotes that the vertices are adjacent in the graph G, and vi 6∼G vj
denotes the vertices are not adjacent in the graph G. The suffix G in the
notations ∼G and 6∼G are conveniently ignored if the graph under discussion
is clearly understood. The notation A(G) denotes the adjacency matrix of the
graph G.

In an attempt to generalize the concept of complement of a graph G, Sam-
pathkumar and Pushpalatha (1998) and Sampathkumar et al. (1998) have in-
troduced the concept of GP

k and GP
k(i) with respect to a partition P of V (G)

(Formal definitions of GP
k and GP

k(i) will be given later). Several results ap-
peared in literature about these complements, for example Sampathkumar and
Pushpalatha (1998), Sampathkumar et al. (1998), Sampathkumar and Push-
palatha (1996), Sudhakara (2002), Sumathi and Brinda (2015).

Akbari and Herman (2007) and Akbari et al. (2009) have obtained the
results on decomposition of complete graphs Kn and complete bipartite graphs
Kn,n into commuting perfect matchings and commuting Hamiltonian cycles.
In Akbari et al. (2009), graphical matrix is defined as symmetric (0, 1)- matrix
with diagonal entries equal to zero. In the same paper centralizer of a graph
G was defined and authors have obtained results on the number of elements in
the centralizer of a cycle and complete graph on n vertices. In the paper by
Manjunatha Prasad et al. (2013), graphicality of product of adjacency matrices
A(G) and A(H) of graphs G and H was dealt and in Manjunatha Prasad et al.
(2014), graphicality of product of adjacency matrices, where the product is
taken over Z2 was discussed. In Arathi Bhat et al. (2016), graphicality of the
product A(G)B(G) was derived, where B(G) is the (0, 1) incidence matrix of
the graph G.

In this paper, we derive properties of partition P of V (G) of size k (< n)
such that A(G) commutes with A(GP

k ) and A(GP
k(i)) and we also obtain some

of the particular elements in the centralizer of G which are derived graphs of G.
And we obtain a commuting decomposition of regular complete k-partite graph
Kn1,n2,...,nk

in terms of a Hamiltonian cycle and its k-complement. We also
get a commuting decomposition of a complete k-partite graph Kn1,n2,...,nk

in
terms of a generalized wheel and its k-complement, where n1, n2, . . . , nk satisfy
some conditions.
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Definitions of the GP
k and the k(i)-complement GP

k(i) with respect to a
partition P of V (G) of size k, are given below.

Definition 1.1. Sampathkumar and Pushpalatha (1998) Let G be a graph and
P = {V1, V2, . . . , Vk} be a partition of V (G). The k-complement GP

k , (k ≥ 2)
of G with respect to P is defined as follows: For all Vi and Vj in P, i 6= j,
remove the edges between Vi and Vj, and add the edges which are not in G.

Definition 1.2. Sampathkumar et al. (1998) Let G be a graph and P =
{V1, V2, . . . , Vk} be a partition of V (G) of order k ≥ 1. For each set Vr in
P , remove the edges of G inside Vr and add the edges of G, (the complement
of G) joining the vertices of Vr. The graph GP

k(i) thus obtained is called the
k(i)-complement of G with respect to the partition P .

Definition 1.3. Manjunatha Prasad et al. (2013) (GH path) Given graphs G
and H on the same set of vertices {v1, v2, . . . , vn}, two vertices vi and vj (i 6= j)
are said to have a GH path from vi to vj, if there exists a vertex vk, different
from vi and vj, such that vi ∼G vk and vk ∼H vj.

Remark 1.4. Let G and H be two graphs on the same set of vertices, say
{v1, v2, . . . , vn}. Then G and H commute with each other if and only if for
every two vertices vi and vj , i 6= j, 1 ≤ i, j ≤ n, the number of GH paths from
vi to vj is same as number of HG paths from vi to vj.

Readers are referred to West (1996) for all the elementary notations and
definitions not described but used in this paper.

2. Commutativity of a graph G and its
k-complement GP

k

In this section, we characterize the graph G and the partition P of V (G)
such that the graph G commutes with its k-complement GP

k .

Let G be a graph and P = {V1, V2, . . . , Vk} be the partition of V (G). Con-
sider a vertex v ∈ Vi, i = 1, 2, . . . , k. Then the i-degree of v, defined with
respect to the partition P of V (G) is the degree of v in the graph induced by
Vi, i.e., 〈Vi〉. And o-degree of v with respect to P is the number of vertices in
V (G) \ Vi which are adjacent to v in G.

Since every square matrix commutes with the zero matrix of the same size,
the case that the graph H is totally disconnected and A(H) is a zero matrix,
is considered as trivial. In the further discussion in this paper we consider only
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the graphs, adjacency matrix of which is non zero.
The following theorem characterizes the graphG, the partition P = {V1, V2, . . . , Vk}
of V (G) for which graphs G and GP

k with respect to the partition P , commute
with each other.

Theorem 2.1. Let P = {V1, V2, . . . , Vk} be a partition of the vertex set V (G)
and let GP

k be the k-complement of G with respect to the partition P . The graphs
G and GP

k commute with each other if and only if the partition P satisfies the
following properties.

(i) For every i, 1 ≤ i ≤ k and for every two vertices u and v in Vi, o-degree
of u is same as o-degree of v.

(ii) For every two vertices u ∈ Vi and v ∈ Vj , 1 ≤ i, j ≤ k and i 6= j,
|A|+ |B| = |C|+ |D|, where
A = {x | x ∈ Vi or x ∈ V (G) \ (Vi ∪ Vj) with x ∼G u and x �G v},
B = {x ∈ Vj | x ∼G u and x ∼G v},
C = {y | y ∈ Vj or x ∈ V (G) \ (Vi ∪ Vj) with y �G u and y ∼G v},
D = {y ∈ Vi | y ∼G u and y ∼G v}
and |X| represents the cardinality of set X.

Proof. Let the graph G and its k-complement GP
k commute with each other.

By the Remark 1.4, for every two vertices u and v of G, the number of GGP
k

paths from u to v is same as the number of GP
k G paths from u to v.

To prove that the partition satisfies conditions (i) and (ii) we consider the
following two cases.

Case (i): Vertices u and v are in the same partite set say Vi, 1 ≤ i ≤ k. By
the definition of GP

k , for any vertex w in Vi which is adjacent to both u and v,
there is both GGP

k and GP
k G paths from u to v through w. In all other possible

cases, there is neither GGP
k path nor GP

k G path from u to v. So, we consider
vertex w which is outside Vi. If this vertex w is such that u ∼G w �G v, then
there is a GGP

k path from u to v and hence there exists a vertex x outside Vi
such that u �G x ∼G v which counts for GP

k G path from u to v.

Since G and GP
k commute with each other, o-degree of u is same as o-degree

of v. This proves (i).

Case (ii): Suppose that u ∈ Vi and v ∈ Vj , 1 ≤ i, j ≤ k, i 6= j. Then following
are the ways of getting GGP

k paths from u to v:
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(a) corresponding to every vertex w in Vj which is adjacent to both u and v in
G,
(b) corresponding to every vertex w either in Vi or in V (G) \ (Vi ∪Vj) which is
adjacent to u and non adjacent to v.

Similarly, we get GP
k G paths from u to v in the following ways:

(a’) corresponding to every vertex w in Vi which is adjacent to both u and v
in G,
(b’) corresponding to every vertex w either in Vj or in V (G) \ (Vi ∪ Vj) which
is adjacent to v and non adjacent to u.

Since G and GP
k commute with each other, by the Remark 1.4, and by the

above discussion, (ii) follows. Conversely, when the condition (i) and (ii) are
satisfied, the number of GGP

k paths is same as number of GP
k G paths between

every two vertices u and v in G. Hence by Remark 1.4, the graphs G and GP
k

commute with each other.

In the following, we give an example to demonstrate the above theorem.
We consider a graph G, a partition P of V (G) of size 2, satisfying conditions
(i) and (ii) of Theorem 2.1. It can be verified that A(G)A(GP

2 ) = A(GP
2 )A(G)

by computing both the products.

Example 2.2.

v1

v3

v4

v2

v5

v6

v7

v8

v1

v3

v4

v2

v5

v6

v7

v8

Figure 1: Graphs G and GP
2 satisfying A(G)A(GP

2 ) = A(GP
2 )A(G).

In the following section we investigate the existence of a partition P of V (G)
such that G commutes with GP

k when G is taken from certain classes of graphs.
We consider the class of trees, complete graphs, cycles and generalized wheels.
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2.1 Trees

In this section we prove that for a tree G there exists no partition P of
V (G) such that G commutes with GP

k , for any k, 2 ≤ k < n.

Theorem 2.3. Let G be a tree with n vertices. Then, for any positive integer
k ≥ 2, there exists no partition P = {V1, V2, . . . , Vk} of V (G) of size k, such
that G commutes with GP

k .

Proof. If possible, let P = {V1, V2, . . . , Vk} be a partition of V (G) of size k ≥ 2
such that G commutes with GP

k .

Let u be a pendant vertex and v be the vertex adjacent to u in G. Since G is
not K2, (for G = K2, A(GP

2 ) is a zero matrix), v is a vertex of degree at least
2.

If u and v are in the same partite set, say Vi, 1 ≤ i ≤ k, then, by (i) of
Theorem 2.1, every vertex adjacent to v must be in Vi only. Likewise, every
vertex adjacent to any vertex in Vi must lie in Vi. Effectively, all the vertices
of G are in Vi, which is not possible, since k ≥ 2. Therefore, u and v are in two
different partite sets say, u ∈ V1 and v ∈ V2.

Consider a vertex w adjacent to v. If either w ∈ V2 or w belongs to a partite
set other than V1 and V2, say V3, then there is at least one GGP

k path but there
is no GP

k G path from v to u. Hence, by Remark 1.4, it follows that all the
vertices which are adjacent to v are in V1.

Let w be any vertex in V1, w 6= u which is adjacent to v. Now, for any x, x 6= v
which is adjacent to w, either when x ∈ V1, x ∈ V2 or x is outside V1 ∪ V2, one
can show that there are different numbers of GGP

k and GP
k G paths between

two suitably chosen vertices, which is not possible. Therefore, there is no x
adjacent to any vertex w in N(v). Which implies k = 2 and the only possible
tree is the star K1,n−1. In which case GP

2 is a zero matrix, and the case is
trivial. This completes the proof.

2.2 Complete Graphs

Here we show the existence of a partition P of V (Kn) such that Kn com-
mutes with (Kn)Pk if and only if n is not a prime number.

Theorem 2.4. Let G be the complete graph on n vertices. Then there exists a
positive integer k ≥ 2, and a partition P = {V1, V2, . . . , Vk} of V (G), such that
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G commutes with GP
k , if and only if n is not a prime number.

Proof. Consider the complete graphG = Kn and a partition P = {V1, V2, . . . , Vk}
of V (G) of order k, with |Vi| = ni, 1 ≤ i ≤ k.

Then A(G) can be viewed as,

A(G) =



(J − I)n1×n1
Jn1×n2

Jn1×n3
. . . Jn1×nk

Jn2×n1
(J − I)n2×n2

. . . . . . Jn2×nk

Jn3×n1
Jn3×n2

. . . . . . Jn3×nk

...
...

...
. . .

...

Jnk×n1 Jnk×n2 . . .
. . . (J − I)nk×nk


with respect to the above A(G), A(GP

k ) becomes,

A(GP
k ) =



(J − I)n1×n1
0n1×n2

0n1×n3
. . . 0n1×nk

0n2×n1
(J − I)n2×n2

. . . . . . 0n2×nk

0n3×n1
0n3×n2

. . . . . . 0n3×nk

...
...

...
. . .

...

0nk×n1 0nk×n2 . . .
. . . (J − I)nk×nk

.

Then the product A(G)A(GP
k ) and the product A(GP

k )A(G) are given as fol-
lows:

A(G)A(GP
k ) =


(J − I)2

n1×n1
Jn1×n2(J − I)n2×n2 . . . Jn1×nk

(J − I)nk×nk

Jn2×n1(J − I)n1×n1 (J − I)2
n2×n2

. . . Jn2×nk
(J − I)nk×nk

...
...

. . .
...

Jnk×n1
(J − I)n1×n1

Jnk×n2
(J − I)n2×n2

. . . (J − I)2
nk×nk

,

A(GP
k )A(G) =


(J − I)2

n1×n1
(J − I)n1×n1Jn1×n2 . . . (J − I)n1×n1Jn1×nk

(J − I)n2×n2(Jn2×n1) (J − I)2
n2×n2

. . . (J − I)n2×n2Jn2×nk

...
...

. . .
...

(J − I)nk×nk
Jnk×n1 (J − I)nk×nk

Jnk×n2

. . . (J − I)2
nk×nk

.

If the graphsG andGP
k commute, then Jn1×n2(J−I)n2×n2 = (J−I)n1×n1Jn1×n2 .

Which implies (n2 − 1)Jn1×n2 = (n1 − 1)Jn1×n2 , or n2 = n1. Proceeding like
this ni = nj for every i = 1, 2, . . . , k. Therefore n is a multiple of k and n has
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to be a composite number.

Conversely, when n is a composite number, taking
n

k
vertices in each partite

set i.e., by considering |Vi| = |Vj |, for every i and j, 1 ≤ i, j ≤ k, and taking
the k-complement with respect to the above partition, we can retrace the steps
above to show that G commutes with GP

k .

Remark 2.5. In paper Manjunatha Prasad et al. (2014), while discussing
about the graphical nature of the modulo 2 product A(G)A(H) of the adjacency
matrices of graphs G and H, authors have observed that the commutativity of
A(G) and A(H) is required for the symmetry of the product matrix A(G)A(H).
The other essential property is that for every i = 1, 2, . . . , n, there are even
number of vertices vk such that vi ∼ Gvk and vk ∼ Hvi which guarantees the
zero diagonal.

Now, suppose that Kn and (Kn)Pk commute with each other. If each |Vi|, 1 ≤
i ≤ k is an odd integer i.e., if i-degree of each vertex is even, then we observe
that when the multiplication is taken over Z2, A(G)A((G)Pk ) is always graphical.

2.3 Cycles

In this section we show that, a partition P of V (Cn) with the property that
Cn commutes with (Cn)Pk exists if and only if n is not a prime number.

Let Cn be a cycle on n vertices v1, v2, . . . , vn. Let vi ∼G vi+1, i = 1, 2, . . . , n−
1, vn ∼G v1. Consider the k−complement (Cn)Pk of Cn with respect to some
partition P = {V1, V2, . . . , Vk} of V (Cn) of size k ≥ 2. From (i) of Theorem
2.1, two graphs G and GP

k commute if for every i = 1, 2, . . . , k, all the vertices
in Vi have the same o-degree.

Therefore, for every i = 1, 2, . . . , k, Vi is either union of K ′2s or totally discon-
nected. In the following theorem we prove that if Cn commutes with (Cn)Pk ,
then 〈Vi〉 is totally disconnected.

Theorem 2.6. Let G = Cn be a cycle on n vertices v1, v2, . . . , vn with vi ∼G

vi+1, i = 1, 2, . . . , n − 1, vn ∼G v1. Let GP
k be of G with respect to some

partition P = {V1, V2, . . . , Vk} of V (G) of size k ≥ 2. If G commutes with GP
k

then induced subgraphs 〈Vi〉, i = 1, 2, . . . , k are totally disconnected.

Proof. LetG commute withGP
k with respect to some partition P = {V1, V2, . . . , Vk}

of V (G) of size k ≥ 2. Then we show that there is no partite set say Vi, 1 ≤
i ≤ k, such that 〈Vi〉 is either a K2 or union of K ′2s.
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Suppose the edge (v1, v2) ∈ V1 and let GP
k , with respect to a partition P =

{V1, V2, . . . , Vk} (k ≥ 2) of V (G) commute with G.

Let both the vertices v3, vn ∈ V2. Then from the vertex vn to v2 there is at
least one GGP

k path. But from v2 to vn there exists no GGP
k path. Therefore

v3 and vn cannot be in the same partite set.

Let v3 ∈ V2 and vn ∈ V3. Then from v1 to vn there is a GGP
k path through v2

and in order to get a GGP
k path from vn to v1, the vertex vn−1 must be either

in V2 or in V3 or lies outside V1 ∪ V2 ∪ V3, say V4.

In all of the above three cases, there are two GGP
k paths and one GP

k G path
from vn to v2, which by Remark1.4, is not possible.

Hence, when G commutes with GP
k , 〈Vi〉 is totally disconnected for every i =

1, 2, . . . , k.

The following theorem gives all possible values of n and k and the partition P
of V (G), such that G = Cn commutes with GP

k .

Theorem 2.7. Let G = Cn be a cycle on n vertices v1, v2, . . . , vn with vi ∼G

vi+1, i = 1, 2, . . . , n − 1, vn ∼G v1, and let GP
k be k-complement of G with

respect to some partition P = {V1, V2, . . . , Vk} of V (G) of size k ≥ 2. G
commutes with GP

k if and only if each 〈Vi〉 is totally disconnected and vlk+i ∈
Vi, 1 ≤ i ≤ k and 0 ≤ l ≤ n

k
− 1, n is a multiple of k.

Proof. From the Theorem 2.6, if G commutes with GP
k , then 〈Vi〉 is totally

disconnected for every i = 1, 2, . . . , k. Let v1 ∈ V1, v2 ∈ V2.

Suppose v3 belong to V1, then vn belong to either V2 or V (G) \ (V1 ∪ V2), say
vn ∈ V3. The vertex vn ∈ V2 for, if it is in V3, then from v1 to v2 there is a
GGP

k path but there is no GGP
k path from v2 to v1.

Now the vertex vn−1 ∈ V1 or V3. But if vn−1 ∈ V3, then from v2 to vn−1

there are two GGP
k paths, but from vn−1 to v2 there is at most one GGP

k path.
Therefore vn−1 ∈ V1. Proceeding like this, all vertices with odd index belong
to V1 and remaining vertices belong to V2. Therefore when vn ∈ V2, k = 2 and
n is a multiple of 2.

Suppose v3 ∈ V3 and vn ∈ V3, then the vertex v4 can belong to V1 or V2 or
outside V1 ∪ V2 ∪ V3, say V4 .
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If v4 ∈ V4 or V2, then from v3 to v1 there is a GGP
k path through v4, but from

v1 to v3 there is no GGP
k path. Therefore v4 ∈ V1.

Similarly we can prove that vn−1, v5 ∈ V2 and so on. Therefore, vn, v3 ∈ V3 =⇒
k = 3 and n is a multiple of 3. The vertices vlk+i ∈ Vi, 1 ≤ i ≤ 3, 0 ≤ l ≤ n

3
−1.

Now suppose the vertex vi ∈ Vi, 1 ≤ i ≤ r, and vn ∈ Vr, then we prove that
the vertex vr+j ∈ Vj , 1 ≤ j ≤ r.

Suppose vr+j /∈ Vj , 1 ≤ j ≤ r, then one can show that there are different
numbers of GGP

k and GP
k G paths between two suitably chosen vertices, which

is not possible.

Continuing like this, we get that the vertex vlk+i ∈ Vi, 1 ≤ i ≤ k and 0 ≤ l ≤
n

k
− 1 and n is a multiple of k.

Conversely, let 〈Vi〉 be totally disconnected with vlk+i ∈ Vi, 1 ≤ i ≤ k and
0 ≤ l ≤ n

k
− 1. Then in GP

k with respect to the partition P = {V1, V2, . . . , Vk},
a vertex vi is non adjacent to vi−1, vi+1, vk+i, v2k+i, . . . , vlk+i and adjacent to
all the remaining vertices. Since there are

n

k
vertices in every partite set GP

k is

regular with regularity n− 2− n

k
.

To show that A(G) and A(GP
k ) commute with each other, we show that both

of them are circulant. Since G is a cycle A(G) is circulant.

Consider ith row of A(GP
k ). The zero entries in this row are at the positions

(i, i− 1), (i, i + 1), (i, k + i), (i, 2k + i), . . . , (i, lk + i). For all these pairs (i, j),
j − i+ 1 are given by, 0, 2, k+ 1, 2k+ 1, . . . , lk+ 1. The first row of A(GP

k ) has
zero entries at exactly the above column positions. Hence we get, (A(GP

k ))i,j =
(A(GP

k ))1,j−i+1 for every i and j. Therefore, by definition, A(GP
k ) is circulant.

Since every two circulant matrices commute with each other, G commutes with
GP

k .

Remark 2.8. In paper Manjunatha Prasad et al. (2013), while discussing
about the graphical nature of the product A(G)A(H) of the adjacency matrices
of graphs G and H, authors have observed that the commutativity of A(G) and
A(H) is required for the symmetry of the product matrix A(G)A(H). The other
two essential properties are as follows. The graph H should be a subgraph of G
which guarantees the zero diagonal and between every two vertices vi and vj,
there can be at most one GH path from vi to vj and when there is one GH path
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from vi to vj then there is exactly one GH path from vj to vi, which guarantees
that every entry is either 0 or 1.

Now, suppose that A(G) and A(GP
k ) commute with each other. Since G is a

cycle and degree of any vertex is two in G, between any two vertices there can
be at most two GGP

k paths. Thus, any entry of A(G)A(GP
k ) is 0,1 or 2. And

also, since every set Vi, 1 ≤ i ≤ k, is independent, the diagonal of A(G)A(GP
k )

has all entries equal to zero. Hence if there is no entry which is two, then
A(G)A(GP

k ) is graphical.

Therefore if multiplication is taken over Z2, then A(G)A(GP
k ) is always graph-

ical.

When k = 2 and |Vi| ≥ 4, 1 ≤ i ≤ k, then at least one entry in A(G)A(GP
k )

is 2. Similarly, if k ≥ 3 and |Vi| ≥ 2 1 ≤ i ≤ k, then at least one entry
in A(G)A(GP

k ) is 2. In all such cases, with respect to usual multiplication
A(G)A(GP

k ) is not graphical.

Now consider the remaining cases.

Case (i): When k ≥ 3 and |Vi| = 1, 1 ≤ i ≤ k. In this case, k will be equal to
n and GP

k is same as G and the corresponding results are well settled in paper
Manjunatha Prasad et al. (2013).

Case (ii): When k=2 and |Vi| ≤ 3, 1 ≤ i ≤ k. There are 2 cases. One, when
k = 2, |V1| = |V3| = 3, in which case the graph G is C6 and GP

2 is a 1-regular
graph. And A(G)A(GP

k ) is graphical with realizing graph of product is the David
graph.

The other case, when k = 2 and |V1| = |V2| = 2 corresponds to the cycle C4

and the corresponding GP
2 is totally disconnected. Therefore A(GP

2 ) is the zero
matrix of order four, which is a trivial case.
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In the following, we give an example to demonstrate the above remark. We
consider a graph G = C9, GP

3 with respect to a partition P of V (G) of size 3,
satisfying the conditions given in Theorem 2.7, and the graph Γ, where A(Γ) =
A(G)A(GP

3 )(mod 2). It can be verified that A(G)A(GP
3 )(mod 2) = A(Γ) by

computing the product.

Example 2.9.

v
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Figure 2: Graphs G = C9, GP
3 and Γ with A(Γ) = A(G)A(GP

3 )(mod 2).

Remark 2.10. Let G,H and Γ be the graphs defined on the same set of ver-
tices. According to Theorem 7 of Manjunatha Prasad et al. (2013), when
A(G)A(H) = A(Γ), degree of a vertex in the product graph Γ is given by
degΓvi = degGvi.degHvi. Therefore when Cn commutes with (Cn)Pk , row sum
of the product A(Cn)A((Cn)Pk ) is equal to 2(n− n

k
− 2).

2.4 Generalized Wheels

The Generalized Wheel Wm,n = Km + Cn has m central vertices (vertices of
Km) and n peripheral vertices (vertices of Cn). Every central vertex is adjacent
to all the peripheral vertices.

In this section, we show the existence of a partition P of size k of V (Wm,n),
with the property that Wm,n commutes with (Wm,n)Pk .

Consider the generalized wheel G = Wm,n. Let v1, v2, . . . , vn be the n vertices
on the cycle with vi ∼G vi+1, 1 ≤ i ≤ n − 1, vn ∼G v1 and let v′1, v′2, . . . , v′m
be the m central vertices. Partition the n vertices on the cycle into l par-
tite sets {V1, V2, . . . , Vl} and m central vertices into r = k − l partite sets
{Vl+1, Vl+2, . . . , Vl+r = Vk}. Let |Vl+i| = mi l ≤ i ≤ r = k − l with m1 +m2 +
. . .+mr = m.

By considering central vertices in the beginning and the vertices on the cycle
afterwards, we can view A(Wm,n) and A((Wm,n)Pk ), as follows:

74 Malaysian Journal of Mathematical Sciences



Commuting graphs and their generalized complements

A(Wm,n) =

(
Om×m Jm×n
Jn×m A(Cn)n ×n

)
,

A((Wm,n)Pk ) =

(
A(HP

r )m×m Om×n
On×m A((Cn)Pl )n ×n

)
,

where A(HP
r )m×m is the adjacency matrix of r-complement of m central ver-

tices with respect to the r partition and A((Cn)Pl )n×n is the adjacency matrix
of l-complement of the n vertices on the cycle with respect to the l partition.

Theorem 2.11. Let v1, v2, . . . , vn be the n vertices on the cycle Cn and let
v′1, v

′
2, . . . , v

′
m be the m central vertices of Wm,n. Let the n vertices on the

cycle be partitioned into l partite sets and m central vertices be partitioned into
r = k − l partite sets. The graphs Wm,n and (Wm,n)Pk with respect to the
partition P = {V1, V2, . . . , Vk}, commute if and only if the graph Wm,n and the
partition P satisfies the following properties;

(i) each 〈Vi〉 , 1 ≤ i ≤ k is totally disconnected with vtl+i ∈ Vi, 1 ≤ i ≤ l and
0 ≤ t ≤ n

l
− 1 and n is a multiple of l,

(ii) mi =
1

r − 1
(n− n

l
− 2), where |Vl+i| = mi , 1 ≤ i ≤ r.

Proof. The product A(Wm,n)A((Wm,n)Pk ) and A((Wm,n)Pk )A(Wm,n) are given
as follows;

A(Wm,n)A((Wm,n)Pk ) =

(
Om×m Jm×nA((Cn)Pl )n×n

Jn×mA(HP
r )m×m A(Cn)n ×nA((Cn)Pl )n×n

)
,

A((Wm,n)Pk )A(Wm,n) =

(
Om×m A(HP

r )m×mJm×n
A((Cn)Pl )n×nJn×m A((Cn)Pl )n ×nA(Cn)n×n

)
.

From the above, we get, when Wm,n commutes with (Wm,n)Pk , Cn must com-
mute with (Cn)Pl . Therefore, by Theorem 2.7, it follows that 〈Vi〉 is totally
disconnected 1 ≤ i ≤ l and vtl+i ∈ Vi , 0 ≤ t ≤ n

l
− 1 and n is a multiple of l.

The graph (Cn)Pl is a regular with regularity n− n

l
− 2.

Now A(HP
r ) =


Om1×m1

Jm1×m2
. . . Jm1×mr

Jm2×m1 0m2×m2 . . . Jm2×mr

...
...

. . .
...

Jmr×m1
Jmr×m2

. . . 0mr×mr

.
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A(HP
r )m×mJm×n =


(m2 +m3 + . . .+mr)Jm1×n
(m1 +m3 + . . .+mr)Jm2×n

...
(m1 +m2 + . . .+mr−1)Jmr×n

,

and Jm×nA((Cn)Pl )n×n = (n− n

l
− 2)Jm×n.

When Wm,n commutes with (Wm,n)Pk ,
A(HP

r )m×mJm×n = Jm×nA((Cn)Pl )n×n.

Which implies, mi = mj 1 ≤ i ≤ r, and mi =
1

r − 1
(n− n

l
− 2).

Conversely, if the partition P of V (Wm,n) satisfies both the conditions of
the theorem, then we can retrace the steps above to show thatWm,n commutes
with (Wm,n)Pk .

We observe that for a given value of n, there exist many values of m and
vice versa such thatWm,n commutes with (Wm,n)Pk . We show the above fact in
the following two examples. In the Example 2.12, we consider n = 8 and find
all possible values of m and the corresponding graphs Wm,n. And in Example
2.13, we consider m = 4 and find all possible values of n and the corresponding
graphs Wm,n.

Example 2.12. For n = 8, as n is a multiple of l, l can take the values 2 or
4.

Consider the case l = 2. Then mi =
1

r − 1
(2) implies that r can take the values

either 2 or 3. Therefore when r = 2,m = 4 results in W4,8 with k = 4. And
r = 3,m = 3 results in W3,8 with k = 5.

Consider the case l = 4. Then mi =
1

r − 1
(4) and hence r can take the values

2,3 or 5. When r = 2,m = 8 results inW8,8 with k = 6. And when r = 3,m = 6
results in W6,8 with k = 7. Finally, r = 5,m = 5 results in W5,8 with k = 9.

Example 2.13. When m = 4, r can take the values 2 or 4.
Consider the case r=2. Then mi = 2 and l =

n

n− 4
. Therefore n can take the

values either 5,6 or 8.
When n = 5, l = 5 results in W4,5, with k = 7. When n = 6, l = 3 results in
W4,6 with k = 5. And when n = 8, l = 2 results in W4,8, with k = 4.
Consider the case r = 4. Then mi = 1 and l =

n

n− 5
. Therefore n can take

the values 6 or 10.
When n = 6, l = 6 results in W4,6, with k = 10. And when n = 10, l = 2
results in W4,10 with k = 6.
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Remark 2.14. Let G = Wm,n. Suppose that G and GP
k commute with each

other, then we observe that, by Remark 2.5, when the multiplication is taken
over Z2, A(G)A(GP

k ) is always graphical.

3. Commuting decomposition of Complete
k-partite graphs

A decomposition of a graph G is a collection of subgraphs H1, H2, . . . ,Hk

that partitions the edges of G. That is, for all i and j,
⋃

1≤i≤k
Hi = G and

E(Hi) ∩ E(Hj) = Φ for i 6= j.

This section deals with commuting decomposition of a complete k-partite
graph Kn1,n2,...,nk

into a subgraph and its k-complement. Theorem 3.1 ex-
plains the commuting decomposition of Kn1,n2,...,nk

into a cycle Cn and its
k-complement (Cn)Pk . Theorem 3.2 gives the commuting decomposition of
Kn1,n2,...,nk

into a generalized wheel Wm,n and its k-complement (Wm,n)Pk . In
both the cases, we consider the partition P to be the k-partition of the complete
k-partite graph Kn1,n2,...,nk

.

Theorem 3.1. Let G be a regular complete k-partite graph Kn1,n2,...,nk
, where

ni =
n

k
for i = 1, 2, . . . , k with respect to a partition P = {V1, V2, . . . , Vk} of

V (G). Then the graph G is decomposable into two commuting subgraphs of G,
one of which is Cn and the other one is its k-complement with respect to the
same partition P = {V1, V2, . . . , Vk}.

Proof. Let V (G) = {v1, v2, . . . , vn} be the vertices of G. Let the partition
P = {V1, V2, . . . , Vk} of the regular k-partite graph be taken as follows. The
vertices vlk+i ∈ Vi, 1 ≤ i ≤ k, 0 ≤ l ≤ n

k
− 1. Then observe that the graph

G = Kn1,n2,...,nk
has a Hamiltonian cycle Cn on the vertices v1, v2, . . . , vn taken

in that order. Let this subgraph be denoted by H1. Remove the edges of Cn

from G. Let the resulting graph be H2. Consider (Cn)Pk with respect to the
same partition P = {V1, V2, . . . , Vk}. Two vertices in (Cn)Pk are adjacent if and
only if they are adjacent in H2. Hence (Cn)Pk is same as H2. Which implies
that Kn1,n2,...,nk

= H1 ∪H2 = Cn ∪ (Cn)Pk with E(H1) ∩ E(H2) = Φ. Hence
H1 = Cn and H2 = (Cn)Pk form a decomposition of Kn1,n2,...,nk

. From the
Theorem 2.7, (Cn)Pk is a circulant graph. Because Cn is also circulant, Cn

commutes with (Cn)Pk . Therefore Cn, (Cn)Pk form a commuting decomposition
of G.
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Theorem 3.2. Let G be a complete k-partite graph Kn1,n2,...,nl,nl+1,...,nl+r=k

having the vertex set {v1, v2, . . . , vn, v
′
1, v
′
2, . . . , v

′
m} with respect to the partition

P = {V1, V2, . . . , Vl, Vl+1, . . . , Vl+r=k} of V (G), where ni =
n

l
for i = 1, 2, . . . , l

and ni =
1

r − 1
(n − n

l
− 2) for i = l + 1, l + 2, . . . , k. Then the graph G

is decomposable into two commuting subgraphs of G, one of which is Wm,n

and the other one is its k-complement with respect to the same partition P =
{V1, V2, . . . , Vk}.

Proof. Let the vertices v1, v2, . . . , vn be such that the vertices vlr+i ∈ Vi, 1 ≤
i ≤ l, 0 ≤ r ≤ n

l
− 1. And the vertices v′1, v′2, . . . , v′m belong to the remaining

partite sets {Vl+1, Vl+2, . . . , Vk}. Define the subgraph H1 of G as follows. H1

is a spanning subgraph of G with E(H1) consisting of a cycle with vertices
v1, v2, . . . , vn in that order and all the edges joining each v′i 1 ≤ i ≤ m to every
vertex on the above cycle. Observe that the subgraph H1 is a generalized wheel
Wm,n.
Remove the edges of the subgraph H1 from G. Let the resulting graph be H2.
Consider (Wm,n)Pk with respect to the same partition P = {V1, V2, . . . , Vk}.
Two vertices in (Wm,n)Pk are adjacent if and only if they are adjacent in H2.
Hence (Wm,n)Pk is same as H2. Which implies that Kn1,n2,...,nk

= H1 ∪H2 =
Wm,n ∪ (Wm,n)Pk with E(H1) ∩ E(H2) = Φ. Hence H1 = Wm,n and H2 =
(Wm,n)Pk form a decomposition of Kn1,n2,...,nk

. From the Theorem 2.11, Wm,n

commutes with (Wm,n)Pk . ThereforeWm,n, (Wm,n)Pk form a commuting decom-
position of G.

In Akbari et al. (2009), authors have obtained all positive integral values
of n for which the graph Kn,n is decomposable into commuting Hamiltonian
cycles. We observe that the commuting decomposition of Kn1,n2,...,nk

, ni =
n

k
for i = 1, 2, . . . , k into a cycle Cn and its k-complement becomes a commuting
decomposition of two Hamiltonian cycles only when (Cn)Pk

∼= Cn. When this is
true, the corresponding vertices have same degree in Cn and (Cn)Pk . Since Cn

is regular with regularity 2 and (Cn)Pk is regular with regularity (n − n

k
− 2),

we get n − n

k
− 2 = 2. Which gives either k = 2, n = 8 and the graph is K4,4

or k = 5, n = 5 and the graph is K1,1,1,1,1 or k = 3, n = 6 and the graph is
K2,2,2. But when k = 3, n = 6, (Cn)Pk is union of two C ′3s. Therefore K4,4

and K1,1,1,1,1 are the only graphs that can be decomposed into two commuting
Hamiltonian cycles in terms of Cn and its k-complement (Cn)Pk .
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4. Commutativity of a graph G and its
k(i)-complement

In this section we derive the conditions to be satisfied by the partition P
of V (G) in order that the graphs G and GP

k(i) commute with each other. We
state the result in the form of a theorem, the proof of which is similar to that
of Theorem 2.1, and hence is omitted.

Theorem 4.1. Let P = {V1, V2, . . . , Vk}(k ≥ 2) be a partition of the vertex set
V (G) and let GP

k(i) be the k(i)-complement of G with respect to the partition P .
The graphs G and GP

k(i) commute with each other, if and only if the partition
P satisfies the following properties.

(i) For every i, 1 ≤ i ≤ k and for every two vertices u and v in Vi, the
i-degree of u is same as the i-degree of v.

(ii) For every two vertices u ∈ Vi and v ∈ Vj , 1 ≤ i, j ≤ k and i 6= j,
|A|+ |B| = |C|+ |D|, where
A = {x ∈ Vi | x ∼G u and x ∼G v},
B = {x ∈ Vj | x ∼G u and x �G v},
C = {y ∈ Vj | y ∼G u and y ∼G v},
D = {y ∈ Vi | y �G u and y ∼G v}
and |X| represents the cardinality of set X.

In the following, we give an example to demonstrate the above theorem.
We consider a graph G, a partition P of V (G) of size 2, satisfying conditions
(i) and (ii) of 4.1. It can be verified that A(G)A(GP

2(i)) = A(GP
2(i))A(G) by

computing both the products (Figure 3).

Example 4.2.

v4v2

v1

v5

v3

v6

v4v2

v1

v5

3

v6

v

v1

v
2

v1

v2

Figure 3: Graphs G and GP
2(i)
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In the following section we investigate the existence of a partition P of
V (G) such that G commutes with GP

k(i) when G is taken from certain classes
of graphs. We consider the classes of complete graphs, cycles and generalized
wheels.

4.1 Complete Graphs

Here we show the existence of a partition P of V (Kn) such that Kn com-
mutes with (Kn)Pk(i) if and only if n is not a prime number.

Theorem 4.3. Let G be the complete graph on n vertices. Then there exists a
positive integer k ≥ 2, and a partition P = {V1, V2, . . . , Vk} of V (G), such that
G commutes with GP

k(i), if and only if n is not a prime number.

Proof. Consider the complete graphG = Kn and a partition P = {V1, V2, . . . , Vk}
of V (G) with |Vi| = ni, 1 ≤ i ≤ k.
Then A(G) can be viewed as,

A(G) =



(J − I)n1×n1
Jn1×n2

Jn1×n3
. . . Jn1×nk

Jn2×n1
(J − I)n2×n2

. . . . . . Jn2×nk

Jn3×n1 Jn3×n2 . . . . . . Jn3×nk

...
...

...
. . .

...

Jnk×n1 Jnk×n2 . . .
. . . (J − I)nk×nk

.

With respect to the above A(G), A(GP
k(i)) becomes,

A(GP
k(i)) =



0n1×n1
Jn1×n2

Jn1×n3
. . . Jn1×nk

Jn2×n1
0n2×n2

. . . . . . Jn2×nk

Jn3×n1
Jn3×n2

. . . . . . Jn3×nk

...
...

...
. . .

...

Jnk×n1 Jnk×n2 . . .
. . . 0nk×nk

.

Then the product A(G)A(GP
k(i)) and the product A(GP

k(i))A(G) are given as
follows;

A(G)A(GP
k(i)

) =


Jn1×n2

Jn2×n1
+ . . . + Jn1×nk

Jnk×n1
(J − I)n1×n1

Jn1×n2
+ Jn1×n3

Jn3×n2
+ . . . + Jn1×nk

Jnk×n2
. . .

(J − I)n2×n2
Jn2×n1

+ . . . + Jn2×nk
Jnk×n1

Jn2×n1
Jn1×n2

+ Jn2×n3
Jn3×n2

+ . . . + Jn2×nk
Jnk×n2

. . .

.

.

.
.
.
.

. . .

,

A(GP
k(i)

)A(G) =


Jn1×n2

Jn2×n1
+ . . . + Jn1×nk

Jnk×n1
Jn1×n2

(J − I)n2×n2
+ Jn1×n3

Jn3×n2
+ . . . + Jn1×nk

Jnk×n2
. . .

Jn2×n1
(J − I)n1×n1

+ . . . + Jn2×nk
Jnk×n1

Jn2×n1
Jn1×n2

+ Jn2×n3
Jn3×n2

+ . . . + Jn2×nk
Jnk×n2

. . .

.

.

.
.
.
.

. . .

.

If the graphsG andGP
k(i) commute then, Jn1×n2

(J−I)n2×n2
= (J−I)n1×n1

Jn1×n2
.
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Which implies (n2 − 1)Jn1×n2
= (n1 − 1)Jn1×n2

, or n2 = n1. Proceeding like
this, ni = nj for every i and j, 1 ≤ i, j ≤ k. Therefore n is a multiple of k and
n has to be a composite number.
Conversely, if n is a composite number, taking

n

k
vertices in each partite set

i.e., by considering |Vi| = |Vj | for every i and j, 1 ≤ i, j ≤ k, and taking the
k-complement with respect to the above partition, we can retrace the steps
above to show that G commutes with GP

k(i).

Remark 4.4. Let G = Kn. Suppose G and GP
k(i) commute with each other

and if o-degree of all the vertices is an even integer, then by Remark 2.5, if the
multiplication is taken over Z2, then A(G)A(GP

k(i)) is always graphical.

4.2 Cycles

In this section we show that, a partition P of V (Cn) with the property that
Cn commutes with (Cn)Pk(i) exists if and only if n is not a prime number.
Let Cn be a cycle on n vertices v1, v2, . . . , vn. Let vi ∼G vi+1, i = 1, 2, . . . , n−
1, vn ∼G v1.
Consider the k(i)−complement (Cn)Pk(i) of Cn with respect to some partition
P = {V1, V2, . . . , Vk} of V (Cn) of size k ≥ 2. From (i) of Theorem 4.1, two
graphs G and GP

k(i) commute if for every i = 1, 2, . . . , k, all the vertices in Vi
have the same i-degree.
Therefore when Cn commutes with (Cn)Pk(i), the graph induced by Vi is either
union of K ′2s or totally disconnected.
In the following theorem we prove that when Cn commutes with (Cn)Pk(i), then
〈Vi〉 is totally disconnected. The proof of this theorem is similar to that of
Theorem 2.6 and hence is omitted.

Theorem 4.5. Let G = Cn be a cycle on n vertices v1, v2, . . . , vn with vi ∼G

vi+1, i = 1, 2, . . . , n − 1, vn ∼G v1. Let GP
k(i) be k(i)-complement of G with

respect to some partition P = {V1, V2, . . . , Vk} of V (G) of size k ≥ 2. If G
commutes with GP

k(i) then induced subgraphs 〈Vi〉, i = 1, 2, . . . , k are totally
disconnected.

The following theorem gives all possible values of n and k and the partition
P of V (G), such that G = Cn commutes with GP

k(i). The proof of this theorem
is similar to that of Theorem 2.7, and hence is omitted.

Theorem 4.6. Let G = Cn be a cycle on n vertices v1, v2, . . . , vn with vi ∼G

vi+1, i = 1, 2, . . . , n − 1, vn ∼G v1, and let GP
k(i) be k(i)-complement of G

with respect to some partition P = {V1, V2, . . . , Vk} of V (G) of size k ≥ 2.

Malaysian Journal of Mathematical Sciences 81



Bhat, K. A and Sudhakara, G

G commutes with GP
k(i) if and only if each 〈Vi〉 is totally disconnected and

vlk+i ∈ Vi, 1 ≤ i ≤ k and 0 ≤ l ≤ n

k
− 1, n is a multiple of k.

Remark 4.7. Let G = Cn. Suppose G and GP
k(i) commute with each other,

then we observe by Remark 2.5 that, when the multiplication is taken over Z2,
A(G)A(GP

k(i)) is always graphical.

4.3 Generalized Wheels

In this section, we show the existence of a partition P of V (Wm,n) of size
k, with the property that Wm,n = Km + Cn commutes with (Wm,n)Pk(i).
Let v1, v2, . . . , vn be the n vertices on the cycle with vi ∼G vi+1, 1 ≤ i ≤ n− 1,
vn ∼G v1 and let v′1, v′2, . . . , v′m be the m central vertices. Partition the n ver-
tices on the cycle into l partite sets {V1, V2, . . . , Vl} and m central vertices into
r = k − l partite sets {Vl+1, Vl+2, . . . , Vl+r = Vk}. Let |Vl+i| = mi 1 ≤ i ≤ r
with m1 +m2 + . . .+mr = m.
By considering central vertices in the beginning and the vertices on the cycle
afterwards, we can view A(Wm,n) and (A(Wm,n))Pk(i), as follows;

A(Wm,n) =

(
Om×m Jm×n
Jn×m A(Cn)n ×n

)
, A((Wm,n)Pk(i)) =

(
A(HP

r(i))m×m Jm×n
Jn×m A((Cn)Pl(i))n×n

)
,

where A(HP
r(i))m×m is the adjacency matrix of r(i)-complement of m central

vertices with respect to the r partition and (A(Cn)Pl(i))n×n is the adjacency
matrix of l(i)-complement of the vertices on n cycle with respect to the l par-
tition.

Theorem 4.8. Let v1, v2, . . . , vn be the n vertices on the cycle Cn and let
v′1, v

′
2, . . . , v

′
m be the m central vertices of Wm,n. Let the cycle vertices be parti-

tioned into l partite set and m central vertices be partitioned into r partite sets
so that l + r = k. The graphs Wm,n and (Wm,n)Pk(i) commutes if and only if
the graph Wm,n and the partition satisfies the following properties;

(i) each 〈Vi〉 , 1 ≤ i ≤ k is totally disconnected with vtl+i ∈ Vi, 1 ≤ i ≤ l and
0 ≤ t ≤ n

l
− 1 and n is a multiple of l.

(ii) mi =
n

l
, where |Vl+i| = mi , 1 ≤ i ≤ r.

Proof. The product A(Wm,n)A((Wm,n)Pk(i)) and A((Wm,n)Pk(i))A(Wm,n) are
given as follows;
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A(Wm,n)A((Wm,n)
P
k(i)) =

(
Jm×nJn×m Jm×nA((Cn)

P
l(i))n×n

Jn×mA(HP
r(i))m×m +A(Cn)n×nJn×m Jn×mJm×n +A(Cn)n ×nA((Cn)

P
l(i))n×n

)
,

A((Wm,n)
P
k(i))A(Wm,n) =

(
Jm×nJn×m A(HP

r(i))m×nJm×n + Jm×nA(Cn)n×n

(A(Cn)
P
l(i))n ×nJn×m Jn×mJm×n +A((Cn)

P
l(i))n ×nA(Cn)n ×n

)
As Wm,n commutes with (Wm,n)

P
k(i), Cn must commute with (Cn)

P
l(i). Therefore from

Theorem 4.6, 〈Vi〉, 1 ≤ i ≤ l is totally disconnected with vtl+i ∈ Vi , 0 ≤ t ≤ n

l
− 1

and n is a multiple of l. Also (Cn)
P
l(i) is regular graph with regularity

n

l
+ 1.

Now A(HP
r(i)) =


(J − I)m1×m1 0m1×m2 . . . 0m1×mr

0m2×m1 (J − I)m2×m2 . . . 0m2×mr

...
...

. . .
...

0mr×m1 0mr×m2 . . . (J − I)mr×mr


A(HP

r(i))m×mJm×n + Jm×nA(Cn)n×n =
(m1 − 1)Jm1×n

(m2 − 1)Jm2×n

...
(mr − 1)Jmr×n

+ 2Jm×n =


(m1 + 1)Jm1×n

(m2 + 1)Jm2×n

...
(mr + 1)Jmr×n

 ,

and Jm×nA((Cn)
P
l(i))n×n = (

n

l
+ 1)Jm×n.

As Wm,n commutes with (Wm,n)
P
k(i),

A(HP
r(i))m×nJm×n + Jm×nA(Cn)n×n = Jm×n((A(Cn))

P
l(i))n×n

Which implies mi = mj =
n

l
, 1 ≤ i ≤ r.

Conversely, if Wm,n satisfies both the conditions of the theorem with respect to
the k-complement of the partition P , then we can retrace the steps above to show
that Wm,n commutes with (Wm,n)

P
k(i).

As in Example 2.12 and 2.13, we observe that for a given value of n, there
exists more than one value of m and vice versa such that Wm,n commutes with
(Wm,n)Pk(i).

Remark 4.9. Suppose A(Wm,n) and A((Wm,n)Pk(i)) commute with each other
and n is even. Then we observe by Remark 2.5, that when the multiplication
is taken over Z2, A(Wm,n)A((Wm,n)Pk(i)) is always graphical.
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