Commuting graphs and their generalized complements

Bhat, K. A and Sudhakara, G.
Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, India

E-mail:sudhakaraadiga@yahoo.co.in
* Corresponding author

Received: 4 April 2017
Accepted: 15 January 2018

Abstract

In this paper we consider a graph G, a partition $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of $V(G)$ and the generalized complements G_{k}^{P} and $G_{k(i)}^{P}$ with respect to the partition P. We derive conditions to be satisfied by P so that G commutes with its generalized complements. Apart from the general characterization, we also obtain conditions on $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ so that G commutes with its generalized complements for certain classes of graphs namely complete graphs, cycles and generalized wheels. In the process we obtain a commuting decomposition of regular complete k-partite graph $K_{n_{1}, n_{2}, \ldots, n_{k}}$ in terms of a Hamiltonian cycle and its kcomplement. We also get a commuting decomposition of a complete k-partite graph $K_{n_{1}, n_{2}, \ldots, n_{k}}$ in terms of a generalized wheel and its k complement, where $n_{1}, n_{2}, \ldots, n_{k}$ satisfy some conditions.

Keywords: Adjacency matrix, Graphical, Matrix product, k- complement, $\mathrm{k}(\mathrm{i})$ - complement, Commutativity, Graph decomposition.

1. Introduction

Graphs considered in this paper are simple, undirected, and without selfloops. Let G be a graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. For any two vertices v_{i} and $v_{j}, i \neq j$ in the graph G, $v_{i} \sim_{G} v_{j}$ denotes that the vertices are adjacent in the graph G, and $v_{i} \not \chi_{G} v_{j}$ denotes the vertices are not adjacent in the graph G. The suffix G in the notations \sim_{G} and χ_{G} are conveniently ignored if the graph under discussion is clearly understood. The notation $A(G)$ denotes the adjacency matrix of the graph G.

In an attempt to generalize the concept of complement of a graph G, Sampathkumar and Pushpalatha (1998) and Sampathkumar et al. (1998) have introduced the concept of G_{k}^{P} and $G_{k(i)}^{P}$ with respect to a partition P of $V(G)$ (Formal definitions of G_{k}^{P} and $G_{k(i)}^{P}$ will be given later). Several results appeared in literature about these complements, for example Sampathkumar and Pushpalatha (1998), Sampathkumar et al. (1998), Sampathkumar and Pushpalatha (1996), Sudhakara (2002), Sumathi and Brinda (2015).

Akbari and Herman (2007) and Akbari et al. (2009) have obtained the results on decomposition of complete graphs K_{n} and complete bipartite graphs $K_{n, n}$ into commuting perfect matchings and commuting Hamiltonian cycles. In Akbari et al. (2009), graphical matrix is defined as symmetric $(0,1)$ - matrix with diagonal entries equal to zero. In the same paper centralizer of a graph G was defined and authors have obtained results on the number of elements in the centralizer of a cycle and complete graph on n vertices. In the paper by Manjunatha Prasad et al. (2013), graphicality of product of adjacency matrices $A(G)$ and $A(H)$ of graphs G and H was dealt and in Manjunatha Prasad et al. (2014), graphicality of product of adjacency matrices, where the product is taken over Z_{2} was discussed. In Arathi Bhat et al. (2016), graphicality of the product $A(G) B(G)$ was derived, where $B(G)$ is the $(0,1)$ incidence matrix of the graph G.

In this paper, we derive properties of partition P of $V(G)$ of size $k(<n)$ such that $A(G)$ commutes with $A\left(G_{k}^{P}\right)$ and $A\left(G_{k(i)}^{P}\right)$ and we also obtain some of the particular elements in the centralizer of G which are derived graphs of G. And we obtain a commuting decomposition of regular complete k-partite graph $K_{n_{1}, n_{2}, \ldots, n_{k}}$ in terms of a Hamiltonian cycle and its k-complement. We also get a commuting decomposition of a complete k-partite graph $K_{n_{1}, n_{2}, \ldots, n_{k}}$ in terms of a generalized wheel and its k-complement, where $n_{1}, n_{2}, \ldots, n_{k}$ satisfy some conditions.

Definitions of the G_{k}^{P} and the $k(i)$-complement $G_{k(i)}^{P}$ with respect to a partition P of $V(G)$ of size k, are given below.

Definition 1.1. Sampathkumar and Pushpalatha (1998) Let G be a graph and $P=\left\{V_{1}, V_{2}, \ldots, \overline{V_{k}}\right\}$ be a partition of $V(G)$. The k-complement $G_{k}^{P},(k \geq 2)$ of G with respect to P is defined as follows: For all V_{i} and V_{j} in $P, i \neq j$, remove the edges between V_{i} and V_{j}, and add the edges which are not in G.

Definition 1.2. Sampathkumar et al. (1998) Let G be a graph and $P=$ $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a partition of $V(G)$ of order $k \geq 1$. For each set V_{r} in P, remove the edges of G inside V_{r} and add the edges of \bar{G}, (the complement of G) joining the vertices of V_{r}. The graph $G_{k(i)}^{P}$ thus obtained is called the $k(i)$-complement of G with respect to the partition P.

Definition 1.3. Manjunatha Prasad et al. (2013) (GH path) Given graphs G and H on the same set of vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, two vertices v_{i} and $v_{j}(i \neq j)$ are said to have a GH path from v_{i} to v_{j}, if there exists a vertex v_{k}, different from v_{i} and v_{j}, such that $v_{i} \sim_{G} v_{k}$ and $v_{k} \sim_{H} v_{j}$.

Remark 1.4. Let G and H be two graphs on the same set of vertices, say $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then G and H commute with each other if and only if for every two vertices v_{i} and $v_{j}, i \neq j, 1 \leq i, j \leq n$, the number of $G H$ paths from v_{i} to v_{j} is same as number of $H G$ paths from v_{i} to v_{j}.

Readers are referred to West (1996) for all the elementary notations and definitions not described but used in this paper.

2. Commutativity of a graph G and its k-complement G_{k}^{P}

In this section, we characterize the graph G and the partition P of $V(G)$ such that the graph G commutes with its k-complement G_{k}^{P}.

Let G be a graph and $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be the partition of $V(G)$. Consider a vertex $v \in V_{i}, i=1,2, \ldots, k$. Then the i-degree of v, defined with respect to the partition P of $V(G)$ is the degree of v in the graph induced by V_{i}, i.e., $\left\langle V_{i}\right\rangle$. And o-degree of v with respect to P is the number of vertices in $V(G) \backslash V_{i}$ which are adjacent to v in G.

Since every square matrix commutes with the zero matrix of the same size, the case that the graph H is totally disconnected and $A(H)$ is a zero matrix, is considered as trivial. In the further discussion in this paper we consider only
the graphs, adjacency matrix of which is non zero.
The following theorem characterizes the graph G, the partition $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of $V(G)$ for which graphs G and G_{k}^{P} with respect to the partition P, commute with each other.

Theorem 2.1. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a partition of the vertex set $V(G)$ and let G_{k}^{P} be the k-complement of G with respect to the partition P. The graphs G and G_{k}^{P} commute with each other if and only if the partition P satisfies the following properties.
(i) For every $i, 1 \leq i \leq k$ and for every two vertices u and v in V_{i}, o-degree of u is same as o-degree of v.
(ii) For every two vertices $u \in V_{i}$ and $v \in V_{j}, 1 \leq i, j \leq k$ and $i \neq j$, $|A|+|B|=|C|+|D|$, where $A=\left\{x \mid x \in V_{i}\right.$ or $x \in V(G) \backslash\left(V_{i} \cup V_{j}\right)$ with $x \sim_{G} u$ and $\left.x \nsim_{G} v\right\}$, $B=\left\{x \in V_{j} \mid x \sim_{G} u\right.$ and $\left.x \sim_{G} v\right\}$, $C=\left\{y \mid y \in V_{j}\right.$ or $x \in V(G) \backslash\left(V_{i} \cup V_{j}\right)$ with $y \nsim_{G} u$ and $\left.y \sim_{G} v\right\}$, $D=\left\{y \in V_{i} \mid y \sim_{G} u\right.$ and $\left.y \sim_{G} v\right\}$ and $|X|$ represents the cardinality of set X.

Proof. Let the graph G and its k-complement G_{k}^{P} commute with each other. By the Remark 1.4, for every two vertices u and v of G, the number of $G G_{k}^{P}$ paths from u to v is same as the number of $G_{k}^{P} G$ paths from u to v.

To prove that the partition satisfies conditions (i) and (ii) we consider the following two cases.

Case (i): Vertices u and v are in the same partite set say $V_{i}, 1 \leq i \leq k$. By the definition of G_{k}^{P}, for any vertex w in V_{i} which is adjacent to both u and v, there is both $G G_{k}^{P}$ and $G_{k}^{P} G$ paths from u to v through w. In all other possible cases, there is neither $G G_{k}^{P}$ path nor $G_{k}^{P} G$ path from u to v. So, we consider vertex w which is outside V_{i}. If this vertex w is such that $u \sim_{G} w \nsim_{G} v$, then there is a $G G_{k}^{P}$ path from u to v and hence there exists a vertex x outside V_{i} such that $u \not \overbrace{G} x \sim_{G} v$ which counts for $G_{k}^{P} G$ path from u to v.

Since G and G_{k}^{P} commute with each other, o-degree of u is same as o-degree of v. This proves (i).

Case (ii): Suppose that $u \in V_{i}$ and $v \in V_{j}, 1 \leq i, j \leq k, i \neq j$. Then following are the ways of getting $G G_{k}^{P}$ paths from u to v :
(a) corresponding to every vertex w in V_{j} which is adjacent to both u and v in G,
(b) corresponding to every vertex w either in V_{i} or in $V(G) \backslash\left(V_{i} \cup V_{j}\right)$ which is adjacent to u and non adjacent to v.

Similarly, we get $G_{k}^{P} G$ paths from u to v in the following ways:
(a') corresponding to every vertex w in V_{i} which is adjacent to both u and v in G,
(b') corresponding to every vertex w either in V_{j} or in $V(G) \backslash\left(V_{i} \cup V_{j}\right)$ which is adjacent to v and non adjacent to u.

Since G and G_{k}^{P} commute with each other, by the Remark 1.4, and by the above discussion, (ii) follows. Conversely, when the condition (i) and (ii) are satisfied, the number of $G G_{k}^{P}$ paths is same as number of $G_{k}^{P} G$ paths between every two vertices u and v in G. Hence by Remark 1.4, the graphs G and G_{k}^{P} commute with each other.

In the following, we give an example to demonstrate the above theorem. We consider a graph G, a partition P of $V(G)$ of size 2, satisfying conditions (i) and (ii) of Theorem 2.1. It can be verified that $A(G) A\left(G_{2}^{P}\right)=A\left(G_{2}^{P}\right) A(G)$ by computing both the products.

Example 2.2.

Figure 1: Graphs G and G_{2}^{P} satisfying $A(G) A\left(G_{2}^{P}\right)=A\left(G_{2}^{P}\right) A(G)$.

In the following section we investigate the existence of a partition P of $V(G)$ such that G commutes with G_{k}^{P} when G is taken from certain classes of graphs. We consider the class of trees, complete graphs, cycles and generalized wheels.

```
Bhat, K. A and Sudhakara, G
```


2.1 Trees

In this section we prove that for a tree G there exists no partition P of $V(G)$ such that G commutes with G_{k}^{P}, for any $k, 2 \leq k<n$.

Theorem 2.3. Let G be a tree with n vertices. Then, for any positive integer $k \geq 2$, there exists no partition $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of $V(G)$ of size k, such that G commutes with G_{k}^{P}.

Proof. If possible, let $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a partition of $V(G)$ of size $k \geq 2$ such that G commutes with G_{k}^{P}.

Let u be a pendant vertex and v be the vertex adjacent to u in G. Since G is not K_{2}, (for $G=K_{2}, A\left(G_{2}^{P}\right)$ is a zero matrix), v is a vertex of degree at least 2.

If u and v are in the same partite set, say $V_{i}, 1 \leq i \leq k$, then, by (i) of Theorem 2.1, every vertex adjacent to v must be in V_{i} only. Likewise, every vertex adjacent to any vertex in V_{i} must lie in V_{i}. Effectively, all the vertices of G are in V_{i}, which is not possible, since $k \geq 2$. Therefore, u and v are in two different partite sets say, $u \in V_{1}$ and $v \in V_{2}$.

Consider a vertex w adjacent to v. If either $w \in V_{2}$ or w belongs to a partite set other than V_{1} and V_{2}, say V_{3}, then there is at least one $G G_{k}^{P}$ path but there is no $G_{k}^{P} G$ path from v to u. Hence, by Remark 1.4 , it follows that all the vertices which are adjacent to v are in V_{1}.

Let w be any vertex in $V_{1}, w \neq u$ which is adjacent to v. Now, for any $x, x \neq v$ which is adjacent to w, either when $x \in V_{1}, x \in V_{2}$ or x is outside $V_{1} \cup V_{2}$, one can show that there are different numbers of $G G_{k}^{P}$ and $G_{k}^{P} G$ paths between two suitably chosen vertices, which is not possible. Therefore, there is no x adjacent to any vertex w in $N(v)$. Which implies $k=2$ and the only possible tree is the star $K_{1, n-1}$. In which case G_{2}^{P} is a zero matrix, and the case is trivial. This completes the proof.

2.2 Complete Graphs

Here we show the existence of a partition P of $V\left(K_{n}\right)$ such that K_{n} commutes with $\left(K_{n}\right)_{k}^{P}$ if and only if n is not a prime number.

Theorem 2.4. Let G be the complete graph on n vertices. Then there exists a positive integer $k \geq 2$, and a partition $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of $V(G)$, such that

Commuting graphs and their generalized complements

G commutes with G_{k}^{P}, if and only if n is not a prime number.

Proof. Consider the complete graph $G=K_{n}$ and a partition $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of $V(G)$ of order k, with $\left|V_{i}\right|=n_{i}, 1 \leq i \leq k$.

Then $A(G)$ can be viewed as,

$$
A(G)=\left(\begin{array}{ccccc}
(J-I)_{n_{1} \times n_{1}} & J_{n_{1} \times n_{2}} & J_{n_{1} \times n_{3}} & \cdots & J_{n_{1} \times n_{k}} \\
J_{n_{2} \times n_{1}} & (J-I)_{n_{2} \times n_{2}} & \cdots & \cdots & J_{n_{2} \times n_{k}} \\
J_{n_{3} \times n_{1}} & J_{n_{3} \times n_{2}} & \cdots & \cdots & J_{n_{3} \times n_{k}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
J_{n_{k} \times n_{1}} & J_{n_{k} \times n_{2}} & \cdots & \ddots & (J-I)_{n_{k} \times n_{k}}
\end{array}\right)
$$

with respect to the above $A(G), A\left(G_{k}^{P}\right)$ becomes,

$$
A\left(G_{k}^{P}\right)=\left(\begin{array}{ccccc}
(J-I)_{n_{1} \times n_{1}} & 0_{n_{1} \times n_{2}} & 0_{n_{1} \times n_{3}} & \cdots & 0_{n_{1} \times n_{k}} \\
0_{n_{2} \times n_{1}} & (J-I)_{n_{2} \times n_{2}} & \cdots & \cdots & 0_{n_{2} \times n_{k}} \\
0_{n_{3} \times n_{1}} & 0_{n_{3} \times n_{2}} & \cdots & \cdots & 0_{n_{3} \times n_{k}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0_{n_{k} \times n_{1}} & 0_{n_{k} \times n_{2}} & \cdots & \ddots & (J-I)_{n_{k} \times n_{k}}
\end{array}\right)
$$

Then the product $A(G) A\left(G_{k}^{P}\right)$ and the product $A\left(G_{k}^{P}\right) A(G)$ are given as follows:

$$
\begin{aligned}
& A(G) A\left(G_{k}^{P}\right)=\left(\begin{array}{cccc}
(J-I)_{n_{1} \times n_{1}}^{2} & J_{n_{1} \times n_{2}}(J-I)_{n_{2} \times n_{2}} & \cdots & J_{n_{1} \times n_{k}}(J-I)_{n_{k} \times n_{k}} \\
J_{n_{2} \times n_{1}}(J-I)_{n_{1} \times n_{1}} & (J-I)_{n_{2} \times n_{2}}^{2} & \cdots & J_{n_{2} \times n_{k}}(J-I)_{n_{k} \times n_{k}} \\
\vdots & \vdots & \ddots & \vdots \\
J_{n_{k} \times n_{1}}(J-I)_{n_{1} \times n_{1}} & J_{n_{k} \times n_{2}}(J-I)_{n_{2} \times n_{2}} & \ddots & (J-I)_{n_{k} \times n_{k}}^{2}
\end{array}\right), \\
& A\left(G_{k}^{P}\right) A(G)=\left(\begin{array}{cccc}
(J-I)_{n_{1} \times n_{1}}^{2} & (J-I)_{n_{1} \times n_{1}} J_{n_{1} \times n_{2}} & \cdots & (J-I)_{n_{1} \times n_{1}} J_{n_{1} \times n_{k}} \\
(J-I)_{n_{2} \times n_{2}}\left(J_{n_{2} \times n_{1}}\right) & (J-I)_{n_{2} \times n_{2}}^{2} & \cdots & (J-I)_{n_{2} \times n_{2}} J_{n_{2} \times n_{k}} \\
\vdots & \vdots & \ddots & \vdots \\
(J-I)_{n_{k} \times n_{k}} J_{n_{k} \times n_{1}} & (J-I)_{n_{k} \times n_{k}} J_{n_{k} \times n_{2}} & \ddots & (J-I)_{n_{k} \times n_{k}}^{2}
\end{array}\right) .
\end{aligned}
$$

If the graphs G and G_{k}^{P} commute, then $J_{n_{1} \times n_{2}}(J-I)_{n_{2} \times n_{2}}=(J-I)_{n_{1} \times n_{1}} J_{n_{1} \times n_{2}}$. Which implies $\left(n_{2}-1\right) J_{n_{1} \times n_{2}}=\left(n_{1}-1\right) J_{n_{1} \times n_{2}}$, or $n_{2}=n_{1}$. Proceeding like this $n_{i}=n_{j}$ for every $i=1,2, \ldots, k$. Therefore n is a multiple of k and n has
to be a composite number.
Conversely, when n is a composite number, taking $\frac{n}{k}$ vertices in each partite set i.e., by considering $\left|V_{i}\right|=\left|V_{j}\right|$, for every i and $j, 1 \leq i, j \leq k$, and taking the k-complement with respect to the above partition, we can retrace the steps above to show that G commutes with G_{k}^{P}.
Remark 2.5. In paper Manjunatha Prasad et al. (2014), while discussing about the graphical nature of the modulo 2 product $A(G) A(H)$ of the adjacency matrices of graphs G and H, authors have observed that the commutativity of $A(G)$ and $A(H)$ is required for the symmetry of the product matrix $A(G) A(H)$. The other essential property is that for every $i=1,2, \ldots, n$, there are even number of vertices v_{k} such that $v_{i} \sim G v_{k}$ and $v_{k} \sim H v_{i}$ which guarantees the zero diagonal.

Now, suppose that K_{n} and $\left(K_{n}\right)_{k}^{P}$ commute with each other. If each $\left|V_{i}\right|, 1 \leq$ $i \leq k$ is an odd integer i.e., if i-degree of each vertex is even, then we observe that when the multiplication is taken over $Z_{2}, A(G) A\left((G)_{k}^{P}\right)$ is always graphical.

2.3 Cycles

In this section we show that, a partition P of $V\left(C_{n}\right)$ with the property that C_{n} commutes with $\left(C_{n}\right)_{k}^{P}$ exists if and only if n is not a prime number.

Let C_{n} be a cycle on n vertices $v_{1}, v_{2}, \ldots, v_{n}$. Let $v_{i} \sim_{G} v_{i+1}, i=1,2, \ldots, n-$ $1, v_{n} \sim_{G} v_{1}$. Consider the k-complement $\left(C_{n}\right)_{k}^{P}$ of C_{n} with respect to some partition $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of $V\left(C_{n}\right)$ of size $k \geq 2$. From (i) of Theorem 2.1. two graphs G and G_{k}^{P} commute if for every $i=1,2, \ldots, k$, all the vertices in V_{i} have the same o-degree.

Therefore, for every $i=1,2, \ldots, k, V_{i}$ is either union of $K_{2}^{\prime} \mathrm{S}$ or totally disconnected. In the following theorem we prove that if C_{n} commutes with $\left(C_{n}\right)_{k}^{P}$, then $\left\langle V_{i}\right\rangle$ is totally disconnected.
Theorem 2.6. Let $G=C_{n}$ be a cycle on n vertices $v_{1}, v_{2}, \ldots, v_{n}$ with $v_{i} \sim_{G}$ $v_{i+1}, i=1,2, \ldots, n-1, v_{n} \sim_{G} v_{1}$. Let G_{k}^{P} be of G with respect to some partition $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of $V(G)$ of size $k \geq 2$. If G commutes with G_{k}^{P} then induced subgraphs $\left\langle V_{i}\right\rangle, i=1,2, \ldots, k$ are totally disconnected.

Proof. Let G commute with G_{k}^{P} with respect to some partition $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of $V(G)$ of size $k \geq 2$. Then we show that there is no partite set say $V_{i}, 1 \leq$ $i \leq k$, such that $\left\langle V_{i}\right\rangle$ is either a K_{2} or union of K_{2}^{\prime} s.

Suppose the edge $\left(v_{1}, v_{2}\right) \in V_{1}$ and let G_{k}^{P}, with respect to a partition $P=$ $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}(k \geq 2)$ of $V(G)$ commute with G.

Let both the vertices $v_{3}, v_{n} \in V_{2}$. Then from the vertex v_{n} to v_{2} there is at least one $G G_{k}^{P}$ path. But from v_{2} to v_{n} there exists no $G G_{k}^{P}$ path. Therefore v_{3} and v_{n} cannot be in the same partite set.

Let $v_{3} \in V_{2}$ and $v_{n} \in V_{3}$. Then from v_{1} to v_{n} there is a $G G_{k}^{P}$ path through v_{2} and in order to get a $G G_{k}^{P}$ path from v_{n} to v_{1}, the vertex v_{n-1} must be either in V_{2} or in V_{3} or lies outside $V_{1} \cup V_{2} \cup V_{3}$, say V_{4}.

In all of the above three cases, there are two $G G_{k}^{P}$ paths and one $G_{k}^{P} G$ path from v_{n} to v_{2}, which by Remark1.4, is not possible.

Hence, when G commutes with $G_{k}^{P},\left\langle V_{i}\right\rangle$ is totally disconnected for every $i=$ $1,2, \ldots, k$.

The following theorem gives all possible values of n and k and the partition P of $V(G)$, such that $G=C_{n}$ commutes with G_{k}^{P}.

Theorem 2.7. Let $G=C_{n}$ be a cycle on n vertices $v_{1}, v_{2}, \ldots, v_{n}$ with $v_{i} \sim_{G}$ $v_{i+1}, i=1,2, \ldots, n-1, v_{n} \sim_{G} v_{1}$, and let G_{k}^{P} be k-complement of G with respect to some partition $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of $V(G)$ of size $k \geq 2$. G commutes with G_{k}^{P} if and only if each $\left\langle V_{i}\right\rangle$ is totally disconnected and $v_{l k+i} \in$ $V_{i}, 1 \leq i \leq k$ and $0 \leq l \leq \frac{n}{k}-1, n$ is a multiple of k.

Proof. From the Theorem 2.6, if G commutes with G_{k}^{P}, then $\left\langle V_{i}\right\rangle$ is totally disconnected for every $i=1,2, \ldots, k$. Let $v_{1} \in V_{1}, v_{2} \in V_{2}$.

Suppose v_{3} belong to V_{1}, then v_{n} belong to either V_{2} or $V(G) \backslash\left(V_{1} \cup V_{2}\right)$, say $v_{n} \in V_{3}$. The vertex $v_{n} \in V_{2}$ for, if it is in V_{3}, then from v_{1} to v_{2} there is a $G G_{k}^{P}$ path but there is no $G G_{k}^{P}$ path from v_{2} to v_{1}.

Now the vertex $v_{n-1} \in V_{1}$ or V_{3}. But if $v_{n-1} \in V_{3}$, then from v_{2} to v_{n-1} there are two $G G_{k}^{P}$ paths, but from v_{n-1} to v_{2} there is at most one $G G_{k}^{P}$ path. Therefore $v_{n-1} \in V_{1}$. Proceeding like this, all vertices with odd index belong to V_{1} and remaining vertices belong to V_{2}. Therefore when $v_{n} \in V_{2}, k=2$ and n is a multiple of 2 .

Suppose $v_{3} \in V_{3}$ and $v_{n} \in V_{3}$, then the vertex v_{4} can belong to V_{1} or V_{2} or outside $V_{1} \cup V_{2} \cup V_{3}$, say V_{4}.

If $v_{4} \in V_{4}$ or V_{2}, then from v_{3} to v_{1} there is a $G G_{k}^{P}$ path through v_{4}, but from v_{1} to v_{3} there is no $G G_{k}^{P}$ path. Therefore $v_{4} \in V_{1}$.

Similarly we can prove that $v_{n-1}, v_{5} \in V_{2}$ and so on. Therefore, $v_{n}, v_{3} \in V_{3} \Longrightarrow$ $k=3$ and n is a multiple of 3 . The vertices $v_{l k+i} \in V_{i}, 1 \leq i \leq 3,0 \leq l \leq \frac{n}{3}-1$.

Now suppose the vertex $v_{i} \in V_{i}, 1 \leq i \leq r$, and $v_{n} \in V_{r}$, then we prove that the vertex $v_{r+j} \in V_{j}, 1 \leq j \leq r$.

Suppose $v_{r+j} \notin V_{j}, 1 \leq j \leq r$, then one can show that there are different numbers of $G G_{k}^{P}$ and $G_{k}^{P} G$ paths between two suitably chosen vertices, which is not possible.

Continuing like this, we get that the vertex $v_{l k+i} \in V_{i}, 1 \leq i \leq k$ and $0 \leq l \leq$ $\frac{n}{k}-1$ and n is a multiple of k.

Conversely, let $\left\langle V_{i}\right\rangle$ be totally disconnected with $v_{l k+i} \in V_{i}, 1 \leq i \leq k$ and $0 \leq l \leq \frac{n}{k}-1$. Then in G_{k}^{P} with respect to the partition $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$, a vertex v_{i} is non adjacent to $v_{i-1}, v_{i+1}, v_{k+i}, v_{2 k+i}, \ldots, v_{l k+i}$ and adjacent to all the remaining vertices. Since there are $\frac{n}{k}$ vertices in every partite set G_{k}^{P} is regular with regularity $n-2-\frac{n}{k}$.

To show that $A(G)$ and $A\left(G_{k}^{P}\right)$ commute with each other, we show that both of them are circulant. Since G is a cycle $A(G)$ is circulant.

Consider $i^{\text {th }}$ row of $A\left(G_{k}^{P}\right)$. The zero entries in this row are at the positions $(i, i-1),(i, i+1),(i, k+i),(i, 2 k+i), \ldots,(i, l k+i)$. For all these pairs (i, j), $j-i+1$ are given by, $0,2, k+1,2 k+1, \ldots, l k+1$. The first row of $A\left(G_{k}^{P}\right)$ has zero entries at exactly the above column positions. Hence we get, $\left(A\left(G_{k}^{P}\right)\right)_{i, j}=$ $\left(A\left(G_{k}^{P}\right)\right)_{1, j-i+1}$ for every i and j. Therefore, by definition, $A\left(G_{k}^{P}\right)$ is circulant. Since every two circulant matrices commute with each other, G commutes with G_{k}^{P}.
Remark 2.8. In paper Manjunatha Prasad et al. (2013), while discussing about the graphical nature of the product $A(G) A(H)$ of the adjacency matrices of graphs G and H, authors have observed that the commutativity of $A(G)$ and $A(H)$ is required for the symmetry of the product matrix $A(G) A(H)$. The other two essential properties are as follows. The graph H should be a subgraph of \bar{G} which guarantees the zero diagonal and between every two vertices v_{i} and v_{j}, there can be at most one GH path from v_{i} to v_{j} and when there is one GH path
from v_{i} to v_{j} then there is exactly one $G H$ path from v_{j} to v_{i}, which guarantees that every entry is either 0 or 1 .

Now, suppose that $A(G)$ and $A\left(G_{k}^{P}\right)$ commute with each other. Since G is a cycle and degree of any vertex is two in G, between any two vertices there can be at most two $G G_{k}^{P}$ paths. Thus, any entry of $A(G) A\left(G_{k}^{P}\right)$ is 0,1 or 2. And also, since every set $V_{i}, 1 \leq i \leq k$, is independent, the diagonal of $A(G) A\left(G_{k}^{P}\right)$ has all entries equal to zero. Hence if there is no entry which is two, then $A(G) A\left(G_{k}^{P}\right)$ is graphical.

Therefore if multiplication is taken over Z_{2}, then $A(G) A\left(G_{k}^{P}\right)$ is always graphical.

When $k=2$ and $\left|V_{i}\right| \geq 4,1 \leq i \leq k$, then at least one entry in $A(G) A\left(G_{k}^{P}\right)$ is 2. Similarly, if $k \geq 3$ and $\left|V_{i}\right| \geq 21 \leq i \leq k$, then at least one entry in $A(G) A\left(G_{k}^{P}\right)$ is 2. In all such cases, with respect to usual multiplication $A(G) A\left(G_{k}^{P}\right)$ is not graphical.

Now consider the remaining cases.
Case (i): When $k \geq 3$ and $\left|V_{i}\right|=1,1 \leq i \leq k$. In this case, k will be equal to n and G_{k}^{P} is same as \bar{G} and the corresponding results are well settled in paper Manjunatha Prasad et al. (2013).

Case (ii): When $k=2$ and $\left|V_{i}\right| \leq 3,1 \leq i \leq k$. There are 2 cases. One, when $k=2,\left|V_{1}\right|=\left|V_{3}\right|=3$, in which case the graph G is C_{6} and G_{2}^{P} is a 1-regular graph. And $A(G) A\left(G_{k}^{P}\right)$ is graphical with realizing graph of product is the David graph.

The other case, when $k=2$ and $\left|V_{1}\right|=\left|V_{2}\right|=2$ corresponds to the cycle C_{4} and the corresponding G_{2}^{P} is totally disconnected. Therefore $A\left(G_{2}^{P}\right)$ is the zero matrix of order four, which is a trivial case.

In the following, we give an example to demonstrate the above remark. We consider a graph $G=C_{9}, G_{3}^{P}$ with respect to a partition P of $V(G)$ of size 3, satisfying the conditions given in Theorem 2.7. and the graph Γ, where $A(\Gamma)=$ $A(G) A\left(G_{3}^{P}\right)(\bmod 2)$. It can be verified that $A(G) A\left(G_{3}^{P}\right)(\bmod 2)=A(\Gamma)$ by computing the product.

Example 2.9.

Figure 2: Graphs $G=C_{9}, G_{3}^{P}$ and Γ with $A(\Gamma)=A(G) A\left(G_{3}^{P}\right)(\bmod 2)$.

Remark 2.10. Let G, H and Γ be the graphs defined on the same set of vertices. According to Theorem 7 of Manjunatha Prasad et al. (2013), when $A(G) A(H)=A(\Gamma)$, degree of a vertex in the product graph Γ is given by $\operatorname{deg}_{\Gamma} v_{i}=\operatorname{deg}_{G} v_{i} . d e g_{H} v_{i}$. Therefore when C_{n} commutes with $\left(C_{n}\right)_{k}^{P}$, row sum of the product $A\left(C_{n}\right) A\left(\left(C_{n}\right)_{k}^{P}\right)$ is equal to $2\left(n-\frac{n}{k}-2\right)$.

2.4 Generalized Wheels

The Generalized Wheel $W_{m, n}=\overline{K_{m}}+C_{n}$ has m central vertices (vertices of $\overline{K_{m}}$) and n peripheral vertices (vertices of C_{n}). Every central vertex is adjacent to all the peripheral vertices.

In this section, we show the existence of a partition P of size k of $V\left(W_{m, n}\right)$, with the property that $W_{m, n}$ commutes with $\left(W_{m, n}\right)_{k}^{P}$.

Consider the generalized wheel $G=W_{m, n}$. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the n vertices on the cycle with $v_{i} \sim_{G} v_{i+1}, 1 \leq i \leq n-1, v_{n} \sim_{G} v_{1}$ and let $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{m}^{\prime}$ be the m central vertices. Partition the n vertices on the cycle into l partite sets $\left\{V_{1}, V_{2}, \ldots, V_{l}\right\}$ and m central vertices into $r=k-l$ partite sets $\left\{V_{l+1}, V_{l+2}, \ldots, V_{l+r}=V_{k}\right\}$. Let $\left|V_{l+i}\right|=m_{i} l \leq i \leq r=k-l$ with $m_{1}+m_{2}+$ $\ldots+m_{r}=m$.

By considering central vertices in the beginning and the vertices on the cycle afterwards, we can view $A\left(W_{m, n}\right)$ and $A\left(\left(W_{m, n}\right)_{k}^{P}\right)$, as follows:

$$
\begin{aligned}
A\left(W_{m, n}\right) & =\left(\begin{array}{cc}
O_{m \times m} & J_{m \times n} \\
J_{n \times m} & A\left(C_{n}\right)_{n \times n}
\end{array}\right), \\
A\left(\left(W_{m, n}\right)_{k}^{P}\right) & =\left(\begin{array}{cc}
A\left(H_{r}^{P}\right)_{m \times m} & O_{m \times n} \\
O_{n \times m} & A\left(\left(C_{n}\right)_{l}^{P}\right)_{n \times n}
\end{array}\right),
\end{aligned}
$$

where $A\left(H_{r}^{P}\right)_{m \times m}$ is the adjacency matrix of r-complement of m central vertices with respect to the r partition and $A\left(\left(C_{n}\right)_{l}^{P}\right)_{n \times n}$ is the adjacency matrix of l-complement of the n vertices on the cycle with respect to the l partition.

Theorem 2.11. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the n vertices on the cycle C_{n} and let $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{m}^{\prime}$ be the m central vertices of $W_{m, n}$. Let the n vertices on the cycle be partitioned into l partite sets and m central vertices be partitioned into $r=k-l$ partite sets. The graphs $W_{m, n}$ and $\left(W_{m, n}\right)_{k}^{P}$ with respect to the partition $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$, commute if and only if the graph $W_{m, n}$ and the partition P satisfies the following properties;
(i) each $\left\langle V_{i}\right\rangle, 1 \leq i \leq k$ is totally disconnected with $v_{t l+i} \in V_{i}, 1 \leq i \leq l$ and $0 \leq t \leq \frac{n}{l}-1$ and n is a multiple of l,
(ii) $m_{i}=\frac{1}{r-1}\left(n-\frac{n}{l}-2\right)$, where $\left|V_{l+i}\right|=m_{i}, 1 \leq i \leq r$.

Proof. The product $A\left(W_{m, n}\right) A\left(\left(W_{m, n}\right)_{k}^{P}\right)$ and $A\left(\left(W_{m, n}\right)_{k}^{P}\right) A\left(W_{m, n}\right)$ are given as follows;
$A\left(W_{m, n}\right) A\left(\left(W_{m, n}\right)_{k}^{P}\right)=\left(\begin{array}{cc}O_{m \times m} & J_{m \times n} A\left(\left(C_{n}\right)_{l}^{P}\right)_{n \times n} \\ J_{n \times m} A\left(H_{r}^{P}\right)_{m \times m} & A\left(C_{n}\right)_{n \times n} A\left(\left(C_{n}\right)_{l}^{P}\right)_{n \times n}\end{array}\right)$,
$A\left(\left(W_{m, n}\right)_{k}^{P}\right) A\left(W_{m, n}\right)=\left(\begin{array}{cc}O_{m \times m} & A\left(H_{r}^{P}\right)_{m \times m} J_{m \times n} \\ A\left(\left(C_{n}\right)_{l}^{P}\right)_{n \times n} J_{n \times m} & A\left(\left(C_{n}\right)_{l}^{P}\right)_{n \times n} A\left(C_{n}\right)_{n \times n}\end{array}\right)$.
From the above, we get, when $W_{m, n}$ commutes with $\left(W_{m, n}\right)_{k}^{P}, C_{n}$ must commute with $\left(C_{n}\right)_{l}^{P}$. Therefore, by Theorem 2.7 , it follows that $\left\langle V_{i}\right\rangle$ is totally disconnected $1 \leq i \leq l$ and $v_{t l+i} \in V_{i}, 0 \leq t \leq \frac{n}{l}-1$ and n is a multiple of l.
The graph $\left(C_{n}\right)_{l}^{P}$ is a regular with regularity $n-\frac{n}{l}-2$.
Now $A\left(H_{r}^{P}\right)=\left(\begin{array}{cccc}O_{m_{1} \times m_{1}} & J_{m_{1} \times m_{2}} & \ldots & J_{m_{1} \times m_{r}} \\ J_{m_{2} \times m_{1}} & 0_{m_{2} \times m_{2}} & \ldots & J_{m_{2} \times m_{r}} \\ \vdots & \vdots & \ddots & \vdots \\ J_{m_{r} \times m_{1}} & J_{m_{r} \times m_{2}} & \ldots & 0_{m_{r} \times m_{r}}\end{array}\right)$.
$A\left(H_{r}^{P}\right)_{m \times m} J_{m \times n}=\left(\begin{array}{c}\left(m_{2}+m_{3}+\ldots+m_{r}\right) J_{m_{1} \times n} \\ \left(m_{1}+m_{3}+\ldots+m_{r}\right) J_{m_{2} \times n} \\ \vdots \\ \left(m_{1}+m_{2}+\ldots+m_{r-1}\right) J_{m_{r} \times n}\end{array}\right)$,
and $J_{m \times n} A\left(\left(C_{n}\right)_{l}^{P}\right)_{n \times n}=\left(n-\frac{n}{l}-2\right) J_{m \times n}$.
When $W_{m, n}$ commutes with $\left(W_{m, n}\right)_{k}^{P}$,
$A\left(H_{r}^{P}\right)_{m \times m} J_{m \times n}=J_{m \times n} A\left(\left(C_{n}\right)_{l}^{P}\right)_{n \times n}$.
Which implies, $m_{i}=m_{j} 1 \leq i \leq r$, and $m_{i}=\frac{1}{r-1}\left(n-\frac{n}{l}-2\right)$.
Conversely, if the partition P of $V\left(W_{m, n}\right)$ satisfies both the conditions of the theorem, then we can retrace the steps above to show that $W_{m, n}$ commutes with $\left(W_{m, n}\right)_{k}^{P}$.

We observe that for a given value of n, there exist many values of m and vice versa such that $W_{m, n}$ commutes with $\left(W_{m, n}\right)_{k}^{P}$. We show the above fact in the following two examples. In the Example 2.12, we consider $n=8$ and find all possible values of m and the corresponding graphs $W_{m, n}$. And in Example 2.13, we consider $m=4$ and find all possible values of n and the corresponding graphs $W_{m, n}$.

Example 2.12. For $n=8$, as n is a multiple of l, l can take the values 2 or 4.

Consider the case $l=2$. Then $m_{i}=\frac{1}{r-1}(2)$ implies that r can take the values either 2 or 3. Therefore when $r=2, m=4$ results in $W_{4,8}$ with $k=4$. And $r=3, m=3$ results in $W_{3,8}$ with $k=5$.
Consider the case $l=4$. Then $m_{i}=\frac{1}{r-1}(4)$ and hence r can take the values 2,3 or 5. When $r=2, m=8$ results in $W_{8,8}$ with $k=6$. And when $r=3, m=6$ results in $W_{6,8}$ with $k=7$. Finally, $r=5, m=5$ results in $W_{5,8}$ with $k=9$.

Example 2.13. When $m=4, r$ can take the values 2 or 4.
Consider the case $r=2$. Then $m_{i}=2$ and $l=\frac{n}{n-4}$. Therefore n can take the values either 5,6 or 8 .
When $n=5, l=5$ results in $W_{4,5}$, with $k=7$. When $n=6, l=3$ results in $W_{4,6}$ with $k=5$. And when $n=8, l=2$ results in $W_{4,8}$, with $k=4$.
Consider the case $r=4$. Then $m_{i}=1$ and $l=\frac{n}{n-5}$. Therefore n can take the values 6 or 10 .
When $n=6, l=6$ results in $W_{4,6}$, with $k=10$. And when $n=10, l=2$ results in $W_{4,10}$ with $k=6$.

Remark 2.14. Let $G=W_{m, n}$. Suppose that G and G_{k}^{P} commute with each other, then we observe that, by Remark 2.5, when the multiplication is taken over $Z_{2}, A(G) A\left(G_{k}^{P}\right)$ is always graphical.

3. Commuting decomposition of Complete k-partite graphs

A decomposition of a graph G is a collection of subgraphs $H_{1}, H_{2}, \ldots, H_{k}$ that partitions the edges of G. That is, for all i and $j, \underset{1 \leq i \leq k}{\bigcup} H_{i}=G$ and $E\left(H_{i}\right) \cap E\left(H_{j}\right)=\Phi$ for $i \neq j$.

This section deals with commuting decomposition of a complete k-partite graph $K_{n_{1}, n_{2}, \ldots, n_{k}}$ into a subgraph and its k-complement. Theorem 3.1 explains the commuting decomposition of $K_{n_{1}, n_{2}, \ldots, n_{k}}$ into a cycle C_{n} and its k-complement $\left(C_{n}\right)_{k}^{P}$. Theorem 3.2 gives the commuting decomposition of $K_{n_{1}, n_{2}, \ldots, n_{k}}$ into a generalized wheel $W_{m, n}$ and its k-complement $\left(W_{m, n}\right)_{k}^{P}$. In both the cases, we consider the partition P to be the k-partition of the complete k-partite graph $K_{n_{1}, n_{2}, \ldots, n_{k}}$.

Theorem 3.1. Let G be a regular complete k-partite graph $K_{n_{1}, n_{2}, \ldots, n_{k}}$, where $n_{i}=\frac{n}{k}$ for $i=1,2, \ldots, k$ with respect to a partition $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of $V(G)$. Then the graph G is decomposable into two commuting subgraphs of G, one of which is C_{n} and the other one is its k-complement with respect to the same partition $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$.

Proof. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertices of G. Let the partition $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of the regular k-partite graph be taken as follows. The vertices $v_{l k+i} \in V_{i}, 1 \leq i \leq k, 0 \leq l \leq \frac{n}{k}-1$. Then observe that the graph $G=K_{n_{1}, n_{2}, \ldots, n_{k}}$ has a Hamiltonian cycle C_{n} on the vertices $v_{1}, v_{2}, \ldots, v_{n}$ taken in that order. Let this subgraph be denoted by H_{1}. Remove the edges of C_{n} from G. Let the resulting graph be H_{2}. Consider $\left(C_{n}\right)_{k}^{P}$ with respect to the same partition $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$. Two vertices in $\left(C_{n}\right)_{k}^{P}$ are adjacent if and only if they are adjacent in H_{2}. Hence $\left(C_{n}\right)_{k}^{P}$ is same as H_{2}. Which implies that $K_{n_{1}, n_{2}, \ldots, n_{k}}=H_{1} \cup H_{2}=C_{n} \cup\left(C_{n}\right)_{k}^{P}$ with $E\left(H_{1}\right) \cap E\left(H_{2}\right)=\Phi$. Hence $H_{1}=C_{n}$ and $H_{2}=\left(C_{n}\right)_{k}^{P}$ form a decomposition of $K_{n_{1}, n_{2}, \ldots, n_{k}}$. From the Theorem 2.7, $\left(C_{n}\right)_{k}^{P}$ is a circulant graph. Because C_{n} is also circulant, C_{n} commutes with $\left(C_{n}\right)_{k}^{P}$. Therefore $C_{n},\left(C_{n}\right)_{k}^{P}$ form a commuting decomposition of G.

Theorem 3.2. Let G be a complete k-partite graph $K_{n_{1}, n_{2}, \ldots, n_{l}, n_{l+1}, \ldots, n_{l+r=k}}$ having the vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{m}^{\prime}\right\}$ with respect to the partition $P=\left\{V_{1}, V_{2}, \ldots, V_{l}, V_{l+1}, \ldots, V_{l+r=k}\right\}$ of $V(G)$, where $n_{i}=\frac{n}{l}$ for $i=1,2, \ldots, l$ and $n_{i}=\frac{1}{r-1}\left(n-\frac{n}{l}-2\right)$ for $i=l+1, l+2, \ldots, k$. Then the graph G is decomposable into two commuting subgraphs of G, one of which is $W_{m, n}$ and the other one is its k-complement with respect to the same partition $P=$ $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$.

Proof. Let the vertices $v_{1}, v_{2}, \ldots, v_{n}$ be such that the vertices $v_{l r+i} \in V_{i}, 1 \leq$ $i \leq l, 0 \leq r \leq \frac{n}{l}-1$. And the vertices $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{m}^{\prime}$ belong to the remaining partite sets $\left\{V_{l+1}, V_{l+2}, \ldots, V_{k}\right\}$. Define the subgraph H_{1} of G as follows. H_{1} is a spanning subgraph of G with $E\left(H_{1}\right)$ consisting of a cycle with vertices $v_{1}, v_{2}, \ldots, v_{n}$ in that order and all the edges joining each $v_{i}^{\prime} 1 \leq i \leq m$ to every vertex on the above cycle. Observe that the subgraph H_{1} is a generalized wheel $W_{m, n}$.
Remove the edges of the subgraph H_{1} from G. Let the resulting graph be H_{2}. Consider $\left(W_{m, n}\right)_{k}^{P}$ with respect to the same partition $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$. Two vertices in $\left(W_{m, n}\right)_{k}^{P}$ are adjacent if and only if they are adjacent in H_{2}. Hence $\left(W_{m, n}\right)_{k}^{P}$ is same as H_{2}. Which implies that $K_{n_{1}, n_{2}, \ldots, n_{k}}=H_{1} \cup H_{2}=$ $W_{m, n} \cup\left(W_{m, n}\right)_{k}^{P}$ with $E\left(H_{1}\right) \cap E\left(H_{2}\right)=\Phi$. Hence $H_{1}=W_{m, n}$ and $H_{2}=$ $\left(W_{m, n}\right)_{k}^{P}$ form a decomposition of $K_{n_{1}, n_{2}, \ldots, n_{k}}$. From the Theorem 2.11, $W_{m, n}$ commutes with $\left(W_{m, n}\right)_{k}^{P}$. Therefore $W_{m, n},\left(W_{m, n}\right)_{k}^{P}$ form a commuting decomposition of G.

In Akbari et al. (2009), authors have obtained all positive integral values of n for which the graph $K_{n, n}$ is decomposable into commuting Hamiltonian cycles. We observe that the commuting decomposition of $K_{n_{1}, n_{2}, \ldots, n_{k}}, n_{i}=\frac{n}{k}$ for $i=1,2, \ldots, k$ into a cycle C_{n} and its k-complement becomes a commuting decomposition of two Hamiltonian cycles only when $\left(C_{n}\right)_{k}^{P} \cong C_{n}$. When this is true, the corresponding vertices have same degree in C_{n} and $\left(C_{n}\right)_{k}^{P}$. Since C_{n} is regular with regularity 2 and $\left(C_{n}\right)_{k}^{P}$ is regular with regularity $\left(n-\frac{n}{k}-2\right)$, we get $n-\frac{n}{k}-2=2$. Which gives either $k=2, n=8$ and the graph is $K_{4,4}$ or $k=5, n=5$ and the graph is $K_{1,1,1,1,1}$ or $k=3, n=6$ and the graph is $K_{2,2,2}$. But when $k=3, n=6,\left(C_{n}\right)_{k}^{P}$ is union of two C_{3}^{\prime} s. Therefore $K_{4,4}$ and $K_{1,1,1,1,1}$ are the only graphs that can be decomposed into two commuting Hamiltonian cycles in terms of C_{n} and its k-complement $\left(C_{n}\right)_{k}^{P}$.

4. Commutativity of a graph G and its $k(i)$-complement

In this section we derive the conditions to be satisfied by the partition P of $V(G)$ in order that the graphs G and $G_{k(i)}^{P}$ commute with each other. We state the result in the form of a theorem, the proof of which is similar to that of Theorem 2.1, and hence is omitted.

Theorem 4.1. Let $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}(k \geq 2)$ be a partition of the vertex set $V(G)$ and let $G_{k(i)}^{P}$ be the $k(i)$-complement of G with respect to the partition P. The graphs G and $G_{k(i)}^{P}$ commute with each other, if and only if the partition P satisfies the following properties.
(i) For every $i, 1 \leq i \leq k$ and for every two vertices u and v in V_{i}, the i-degree of u is same as the i-degree of v.
(ii) For every two vertices $u \in V_{i}$ and $v \in V_{j}, 1 \leq i, j \leq k$ and $i \neq j$,
$|A|+|B|=|C|+|D|$, where
$A=\left\{x \in V_{i} \mid x \sim_{G} u\right.$ and $\left.x \sim_{G} v\right\}$,
$B=\left\{x \in V_{j} \mid x \sim_{G} u\right.$ and $\left.x \nsim_{G} v\right\}$,
$C=\left\{y \in V_{j} \mid y \sim_{G} u\right.$ and $\left.y \sim_{G} v\right\}$,
$D=\left\{y \in V_{i} \mid y \nsim_{G} u\right.$ and $\left.y \sim_{G} v\right\}$
and $|X|$ represents the cardinality of set X.

In the following, we give an example to demonstrate the above theorem. We consider a graph G, a partition P of $V(G)$ of size 2 , satisfying conditions (i) and (ii) of 4.1. It can be verified that $A(G) A\left(G_{2(i)}^{P}\right)=A\left(G_{2(i)}^{P}\right) A(G)$ by computing both the products (Figure 3).

Example 4.2.

Figure 3: Graphs G and $G_{2(i)}^{P}$

In the following section we investigate the existence of a partition P of $V(G)$ such that G commutes with $G_{k(i)}^{P}$ when G is taken from certain classes of graphs. We consider the classes of complete graphs, cycles and generalized wheels.

4.1 Complete Graphs

Here we show the existence of a partition P of $V\left(K_{n}\right)$ such that K_{n} commutes with $\left(K_{n}\right)_{k(i)}^{P}$ if and only if n is not a prime number.
Theorem 4.3. Let G be the complete graph on n vertices. Then there exists a positive integer $k \geq 2$, and a partition $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of $V(G)$, such that G commutes with $G_{k(i)}^{P}$, if and only if n is not a prime number.

Proof. Consider the complete graph $G=K_{n}$ and a partition $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of $V(G)$ with $\left|V_{i}\right|=n_{i}, 1 \leq i \leq k$.
Then $A(G)$ can be viewed as,
$A(G)=\left(\begin{array}{ccccc}(J-I)_{n_{1} \times n_{1}} & J_{n_{1} \times n_{2}} & J_{n_{1} \times n_{3}} & \cdots & J_{n_{1} \times n_{k}} \\ J_{n_{2} \times n_{1}} & (J-I)_{n_{2} \times n_{2}} & \cdots & \cdots & J_{n_{2} \times n_{k}} \\ J_{n_{3} \times n_{1}} & J_{n_{3} \times n_{2}} & \cdots & \cdots & J_{n_{3} \times n_{k}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ J_{n_{k} \times n_{1}} & J_{n_{k} \times n_{2}} & \cdots & \ddots & (J-I)_{n_{k} \times n_{k}}\end{array}\right)$.
With respect to the above $A(G), A\left(G_{k(i)}^{P}\right)$ becomes,
$A\left(G_{k(i)}^{P}\right)=\left(\begin{array}{ccccc}0_{n_{1} \times n_{1}} & J_{n_{1} \times n_{2}} & J_{n_{1} \times n_{3}} & \ldots & J_{n_{1} \times n_{k}} \\ J_{n_{2} \times n_{1}} & 0_{n_{2} \times n_{2}} & \ldots & \ldots & J_{n_{2} \times n_{k}} \\ J_{n_{3} \times n_{1}} & J_{n_{3} \times n_{2}} & \ldots & \ldots & J_{n_{3} \times n_{k}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ J_{n_{k} \times n_{1}} & J_{n_{k} \times n_{2}} & \ldots & \ddots & 0_{n_{k} \times n_{k}}\end{array}\right)$.
Then the product $A(G) A\left(G_{k(i)}^{P}\right)$ and the product $A\left(G_{k(i)}^{P}\right) A(G)$ are given as follows;

If the graphs G and $G_{k(i)}^{P}$ commute then, $J_{n_{1} \times n_{2}}(J-I)_{n_{2} \times n_{2}}=(J-I)_{n_{1} \times n_{1}} J_{n_{1} \times n_{2}}$.

Which implies $\left(n_{2}-1\right) J_{n_{1} \times n_{2}}=\left(n_{1}-1\right) J_{n_{1} \times n_{2}}$, or $n_{2}=n_{1}$. Proceeding like this, $n_{i}=n_{j}$ for every i and $j, 1 \leq i, j \leq k$. Therefore n is a multiple of k and n has to be a composite number.
Conversely, if n is a composite number, taking $\frac{n}{k}$ vertices in each partite set i.e., by considering $\left|V_{i}\right|=\left|V_{j}\right|$ for every i and $\mathrm{j}, 1 \leq i, j \leq k$, and taking the k-complement with respect to the above partition, we can retrace the steps above to show that G commutes with $G_{k(i)}^{P}$.

Remark 4.4. Let $G=K_{n}$. Suppose G and $G_{k(i)}^{P}$ commute with each other and if o-degree of all the vertices is an even integer, then by Remark 2.5, if the multiplication is taken over Z_{2}, then $A(G) A\left(G_{k(i)}^{P}\right)$ is always graphical.

4.2 Cycles

In this section we show that, a partition P of $V\left(C_{n}\right)$ with the property that C_{n} commutes with $\left(C_{n}\right)_{k(i)}^{P}$ exists if and only if n is not a prime number.
Let C_{n} be a cycle on n vertices $v_{1}, v_{2}, \ldots, v_{n}$. Let $v_{i} \sim_{G} v_{i+1}, i=1,2, \ldots, n-$ $1, v_{n} \sim_{G} v_{1}$.
Consider the $k(i)$-complement $\left(C_{n}\right)_{k(i)}^{P}$ of C_{n} with respect to some partition $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of $V\left(C_{n}\right)$ of size $k \geq 2$. From (i) of Theorem 4.1, two graphs G and $G_{k(i)}^{P}$ commute if for every $i=1,2, \ldots, k$, all the vertices in V_{i} have the same i-degree.
Therefore when C_{n} commutes with $\left(C_{n}\right)_{k(i)}^{P}$, the graph induced by V_{i} is either union of $K_{2}^{\prime} \mathrm{s}$ or totally disconnected.
In the following theorem we prove that when C_{n} commutes with $\left(C_{n}\right)_{k(i)}^{P}$, then $\left\langle V_{i}\right\rangle$ is totally disconnected. The proof of this theorem is similar to that of Theorem 2.6 and hence is omitted.

Theorem 4.5. Let $G=C_{n}$ be a cycle on n vertices $v_{1}, v_{2}, \ldots, v_{n}$ with $v_{i} \sim_{G}$ $v_{i+1}, i=1,2, \ldots, n-1, v_{n} \sim_{G} v_{1}$. Let $G_{k(i)}^{P}$ be $k(i)$-complement of G with respect to some partition $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of $V(G)$ of size $k \geq 2$. If G commutes with $G_{k(i)}^{P}$ then induced subgraphs $\left\langle V_{i}\right\rangle, i=1,2, \ldots, k$ are totally disconnected.

The following theorem gives all possible values of n and k and the partition P of $V(G)$, such that $G=C_{n}$ commutes with $G_{k(i)}^{P}$. The proof of this theorem is similar to that of Theorem 2.7, and hence is omitted.

Theorem 4.6. Let $G=C_{n}$ be a cycle on n vertices $v_{1}, v_{2}, \ldots, v_{n}$ with $v_{i} \sim_{G}$ $v_{i+1}, i=1,2, \ldots, n-1, v_{n} \sim_{G} v_{1}$, and let $G_{k(i)}^{P}$ be $k(i)$-complement of G with respect to some partition $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of $V(G)$ of size $k \geq 2$.
G commutes with $G_{k(i)}^{P}$ if and only if each $\left\langle V_{i}\right\rangle$ is totally disconnected and $v_{l k+i} \in V_{i}, 1 \leq i \leq k$ and $0 \leq l \leq \frac{n}{k}-1, n$ is a multiple of k.

Remark 4.7. Let $G=C_{n}$. Suppose G and $G_{k(i)}^{P}$ commute with each other, then we observe by Remark 2.5 that, when the multiplication is taken over Z_{2}, $A(G) A\left(G_{k(i)}^{P}\right)$ is always graphical.

4.3 Generalized Wheels

In this section, we show the existence of a partition P of $V\left(W_{m, n}\right)$ of size k , with the property that $W_{m, n}=\overline{K_{m}}+C_{n}$ commutes with $\left(W_{m, n}\right)_{k(i)}^{P}$.
Let $v_{1}, v_{2}, \ldots, v_{n}$ be the n vertices on the cycle with $v_{i} \sim_{G} v_{i+1}, 1 \leq i \leq n-1$, $v_{n} \sim_{G} v_{1}$ and let $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{m}^{\prime}$ be the m central vertices. Partition the n vertices on the cycle into l partite sets $\left\{V_{1}, V_{2}, \ldots, V_{l}\right\}$ and m central vertices into $r=k-l$ partite sets $\left\{V_{l+1}, V_{l+2}, \ldots, V_{l+r}=V_{k}\right\}$. Let $\left|V_{l+i}\right|=m_{i} 1 \leq i \leq r$ with $m_{1}+m_{2}+\ldots+m_{r}=m$.
By considering central vertices in the beginning and the vertices on the cycle afterwards, we can view $A\left(W_{m, n}\right)$ and $\left(A\left(W_{m, n}\right)\right)_{k(i)}^{P}$, as follows;
$A\left(W_{m, n}\right)=\left(\begin{array}{cc}O_{m \times m} & J_{m \times n} \\ J_{n \times m} & A\left(C_{n}\right)_{n \times n}\end{array}\right), A\left(\left(W_{m, n}\right)_{k(i)}^{P}\right)=\left(\begin{array}{cc}A\left(H_{r(i)}^{P}\right)_{m \times m} & J_{m \times n} \\ J_{n \times m} & A\left(\left(C_{n}\right)_{l(i)}^{P}\right)_{n \times n}\end{array}\right)$,
where $A\left(H_{r(i)}^{P}\right)_{m \times m}$ is the adjacency matrix of $\mathrm{r}(\mathrm{i})$-complement of m central vertices with respect to the r partition and $\left(A\left(C_{n}\right)_{l(i)}^{P}\right)_{n \times n}$ is the adjacency matrix of l(i)-complement of the vertices on n cycle with respect to the l partition.

Theorem 4.8. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the n vertices on the cycle C_{n} and let $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{m}^{\prime}$ be the m central vertices of $W_{m, n}$. Let the cycle vertices be partitioned into l partite set and m central vertices be partitioned into r partite sets so that $l+r=k$. The graphs $W_{m, n}$ and $\left(W_{m, n}\right)_{k(i)}^{P}$ commutes if and only if the graph $W_{m, n}$ and the partition satisfies the following properties;
(i) each $\left\langle V_{i}\right\rangle, 1 \leq i \leq k$ is totally disconnected with $v_{t l+i} \in V_{i}, 1 \leq i \leq l$ and $0 \leq t \leq \frac{n}{l}-1$ and n is a multiple of l.
(ii) $m_{i}=\frac{n}{l}$, where $\left|V_{l+i}\right|=m_{i}, 1 \leq i \leq r$.

Proof. The product $A\left(W_{m, n}\right) A\left(\left(W_{m, n}\right)_{k(i)}^{P}\right)$ and $A\left(\left(W_{m, n}\right)_{k(i)}^{P}\right) A\left(W_{m, n}\right)$ are given as follows;
$A\left(W_{m, n}\right) A\left(\left(W_{m, n}\right)_{k(i)}^{P}\right)=\left(\begin{array}{cc}J_{m \times n} J_{n \times m} & J_{m \times n} A\left(\left(C_{n}\right)_{l(i)}^{P}\right)_{n \times n} \\ J_{n \times m} A\left(H_{r(i)}^{P}\right)_{m \times m}+A\left(C_{n}\right)_{n \times n} J_{n \times m} & J_{n \times m} J_{m \times n}+A\left(C_{n}\right)_{n \times n} A\left(\left(C_{n}\right)_{l(i)}^{P}\right),\end{array}\right.$
$A\left(\left(W_{m, n}\right)_{k(i)}^{P}\right) A\left(W_{m, n}\right)=\left(\begin{array}{cc}J_{m \times n} J_{n \times m} & A\left(H_{r(i)}^{P}\right)_{m \times n} J_{m \times n}+J_{m \times n} A\left(C_{n}\right)_{n \times n} \\ \left(A\left(C_{n}\right)_{l(i)}^{P}\right)_{n \times n} J_{n \times m} & J_{n \times m} J_{m \times n}+A\left(\left(C_{n}\right)_{l(i)}^{P}\right)_{n \times n} A\left(C_{n}\right)_{n \times n}\end{array}\right)$
As $W_{m, n}$ commutes with $\left(W_{m, n}\right)_{k(i)}^{P}, C_{n}$ must commute with $\left(C_{n}\right)_{l(i)}^{P}$. Therefore from Theorem 4.6. $\left\langle V_{i}\right\rangle, 1 \leq i \leq l$ is totally disconnected with $v_{t l+i} \in V_{i}, 0 \leq t \leq \frac{n}{l}-1$ and n is a multiple of l. Also $\left(C_{n}\right)_{l(i)}^{P}$ is regular graph with regularity $\frac{n}{l}+1$.
Now $A\left(H_{r(i)}^{P}\right)=\left(\begin{array}{cccc}(J-I)_{m_{1} \times m_{1}} & 0_{m_{1} \times m_{2}} & \cdots & 0_{m_{1} \times m_{r}} \\ 0_{m_{2} \times m_{1}} & (J-I)_{m_{2} \times m_{2}} & \cdots & 0_{m_{2} \times m_{r}} \\ \vdots & \vdots & \ddots & \vdots \\ 0_{m_{r} \times m_{1}} & 0_{m_{r} \times m_{2}} & \cdots & (J-I)_{m_{r} \times m_{r}}\end{array}\right)$
$A\left(H_{r(i)}^{P}\right)_{m \times m} J_{m \times n}+J_{m \times n} A\left(C_{n}\right)_{n \times n}=$
$\left(\begin{array}{c}\left(m_{1}-1\right) J_{m_{1} \times n} \\ \left(m_{2}-1\right) J_{m_{2} \times n} \\ \vdots \\ \left(m_{r}-1\right) J_{m_{r} \times n}\end{array}\right)+2 J_{m \times n}=\left(\begin{array}{c}\left(m_{1}+1\right) J_{m_{1} \times n} \\ \left(m_{2}+1\right) J_{m_{2} \times n} \\ \vdots \\ \left(m_{r}+1\right) J_{m_{r} \times n}\end{array}\right)$,
and $J_{m \times n} A\left(\left(C_{n}\right)_{l(i)}^{P}\right)_{n \times n}=\left(\frac{n}{l}+1\right) J_{m \times n}$.
As $W_{m, n}$ commutes with $\left(W_{m, n}\right)_{k(i)}^{P}$,
$A\left(H_{r(i)}^{P}\right)_{m \times n} J_{m \times n}+J_{m \times n} A\left(C_{n}\right)_{n \times n}=J_{m \times n}\left(\left(A\left(C_{n}\right)\right)_{l(i)}^{P}\right)_{n \times n}$
Which implies $m_{i}=m_{j}=\frac{n}{l}, 1 \leq i \leq r$.
Conversely, if $W_{m, n}$ satisfies both the conditions of the theorem with respect to the k-complement of the partition P, then we can retrace the steps above to show that $W_{m, n}$ commutes with $\left(W_{m, n}\right)_{k(i)}^{P}$.

As in Example 2.12 and 2.13, we observe that for a given value of n, there exists more than one value of m and vice versa such that $W_{m, n}$ commutes with $\left(W_{m, n}\right)_{k(i)}^{P}$.

Remark 4.9. Suppose $A\left(W_{m, n}\right)$ and $A\left(\left(W_{m, n}\right)_{k(i)}^{P}\right)$ commute with each other and n is even. Then we observe by Remark 2.5, that when the multiplication is taken over $Z_{2}, A\left(W_{m, n}\right) A\left(\left(W_{m, n}\right)_{k(i)}^{P}\right)$ is always graphical.

References

Akbari, S. and Herman, A. (2007). Commuting decompositions of complete graphs. Journal of Combinatorial Designs, 15(2):133-142.

Akbari, S., Moazami, F., and Mohammadian, A. (2009). Commutativity of the adjacency matrices of graphs. Discrete Mathematics, 309(3):595-600.

Arathi Bhat, K., Manjunatha Prasad, K., and Sudhakara, G. (2016). Some matrix equations of graphs. Advances and Applications in Discrete Mathematics, 17(1):29.

Manjunatha Prasad, K., Sudhakara, G., Sujatha, H. S., and Soumya, K. V. (2014). Matrix product(modulo-2) of graphs. Indian Journal of Pure and Applied Mathematics, 45(6):851-860.

Manjunatha Prasad, K., Sudhakara, G., Sujatha, H. S., and Vinay, M. (2013). Matrix Product of Graphs, pages 41-55. Springer India, India.

Sampathkumar, E. and Pushpalatha, L. (1996). Reconstruction of a graph of order p from its $(p-1)-$ complements. Indian Journal of pure and applied Mathematics, 27(5):435-441.

Sampathkumar, E. and Pushpalatha, L. (1998). Complement of a graph: A generalization. Graphs and Combinatorics, 14(4):377-392.

Sampathkumar, E., Pushpalatha, L., Venkatachalam, and Pradeep Bhat, G. (1998). Generalized complements of a graph. Indian J. pure appl. Math, 29(6):625-639.

Sudhakara, G. (2002). Wheels, Cages and Cubes, pages 251-259. Birkhäuser Basel, Basel.

Sumathi, P. and Brinda, T. (2015). Generalized two complement of set domination. International Journal of Scientific and Technology Research, 4(12):262369.

West, D. (1996). Introduction to Graph Theory. Prentice Hall, United States.

