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ABSTRACT

In this paper we consider a graph G, a partition P = {Vi,Va,...,Vi}
of V(G) and the generalized complements G5 and ka(i> with respect
to the partition P. We derive conditions to be satisfied by P so that
G commutes with its generalized complements. Apart from the general
characterization, we also obtain conditions on P = {V1,Va,...,Vi} so
that G commutes with its generalized complements for certain classes
of graphs namely complete graphs, cycles and generalized wheels. In
the process we obtain a commuting decomposition of regular complete
k-partite graph Kp, n,...,n, in terms of a Hamiltonian cycle and its k-
complement. We also get a commuting decomposition of a complete
k-partite graph K, n,,....n, in terms of a generalized wheel and its k-
complement, where ni,ne,...,n, satisfy some conditions.

Keywords: Adjacency matrix, Graphical, Matrix product, k- comple-
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1. Introduction

Graphs considered in this paper are simple, undirected, and without self-
loops. Let G be a graph with vertex set V(G) = {v1,va,...,v,} and edge set
E(G) ={e1,ea,...,en}. For any two vertices v; and v;,% # j in the graph G,
v; ~q v; denotes that the vertices are adjacent in the graph G, and v; %¢ v,
denotes the vertices are not adjacent in the graph G. The suffix G in the
notations ~¢g and ¢ are conveniently ignored if the graph under discussion
is clearly understood. The notation A(G) denotes the adjacency matrix of the
graph G.

In an attempt to generalize the concept of complement of a graph G,
pathkumar and Pushpalathal (1998)) and [Sampathkumar et al.| (1998) have in-
troduced the concept of G} and ka(i) with respect to a partition P of V(G)

(Formal definitions of G} and G, ;) Will be given later). Several results ap-
peared in literature about these complements, for example |Sampathkumar and
Pushpalathal (1998), [Sampathkumar et al.| (1998)), Sampathkumar and Push-
palathal (1996)), Sudhakara (2002), Sumathi and Brinda/ (2015).

|Akbari and Herman| (2007) and [Akbari et al| (2009) have obtained the
results on decomposition of complete graphs K,, and complete bipartite graphs
K,, » into commuting perfect matchings and commuting Hamiltonian cycles.
In Akbari et al|(2009), graphical matrix is defined as symmetric (0, 1)- matrix
with diagonal entries equal to zero. In the same paper centralizer of a graph
G was defined and authors have obtained results on the number of elements in
the centralizer of a cycle and complete graph on n vertices. In the paper by
[Manjunatha Prasad et al.| (2013), graphicality of product of adjacency matrices
A(G) and A(H) of graphs G and H was dealt and in Manjunatha Prasad et al.|
, graphicality of product of adjacency matrices, where the product is
taken over Zs was discussed. In|Arathi Bhat et al. (2016), graphicality of the
product A(G)B(G) was derived, where B(G) is the (0, 1) incidence matrix of
the graph G.

In this paper, we derive properties of partition P of V(G) of size k (< n)
such that A(G) commutes with A(GF) and A(ka(i)) and we also obtain some
of the particular elements in the centralizer of G which are derived graphs of G.
And we obtain a commuting decomposition of regular complete k-partite graph
Ky ns,....n, in terms of a Hamiltonian cycle and its k-complement. We also
get a commuting decomposition of a complete k-partite graph K, n,...n, in
terms of a generalized wheel and its k-complement, where ny,ns, ..., ny satisfy
some conditions.
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Definitions of the Gf and the k(i)-complement ka(i) with respect to a
partition P of V(G) of size k, are given below.

Definition 1.1. [Sampathkumar and Pushpalathd (1998) Let G be a graph and
P = {Vi,Va,...,Vi} be a partition of V(G). The k-complement GE, (k > 2)
of G with respect to P is defined as follows: For all Vi and V; in P,i # j,
remove the edges between V; and V;, and add the edges which are not in G.

Definition 1.2. |Sampathkumar et al.| (1998) Let G be a graph and P =
{1, Va,...,Vi.} be a partition of V(G) of order k > 1. For each set V, in
P, remove the edges of G inside V, and add the edges of G, (the complement
of G) joining the vertices of V,.. The graph G,f(i) thus obtained is called the
k(i)-complement of G with respect to the partition P.

Definition 1.3. [Manjunatha Prasad et al.| (2015) (GH path) Given graphs G
and H on the same set of vertices {v1,ve, ..., vy}, two vertices v; and v; (i # j)
are said to have a GH path from v; to v;, if there exists a vertex vy, different
from v; and v;, such that v; ~q vy and vy, ~g v;.

Remark 1.4. Let G and H be two graphs on the same set of vertices, say
{v1,v2,...,0,}. Then G and H commute with each other if and only if for
every two vertices v; and vj,i # j,1 < 4,5 < n, the number of GH paths from
v; to v; s same as number of HG paths from v; to v;.

Readers are referred to [West| (1996) for all the elementary notations and
definitions not described but used in this paper.

2. Commutativity of a graph G and its
k-complement G

In this section, we characterize the graph G and the partition P of V(G)
such that the graph G commutes with its k-complement ka .

Let G be a graph and P = {V1,Va,...,Vi} be the partition of V(G). Con-
sider a vertex v € V;,i = 1,2,..., k. Then the i-degree of v, defined with
respect to the partition P of V(G) is the degree of v in the graph induced by
Vi, i.e., (V). And o-degree of v with respect to P is the number of vertices in
V(G) \ V; which are adjacent to v in G.

Since every square matrix commutes with the zero matrix of the same size,

the case that the graph H is totally disconnected and A(H) is a zero matrix,
is considered as trivial. In the further discussion in this paper we consider only
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the graphs, adjacency matrix of which is non zero.

The following theorem characterizes the graph G, the partition P = {V,V,,..., Vi }
of V(@) for which graphs G and G}: with respect to the partition P, commute
with each other.

Theorem 2.1. Let P = {V1,Va,...,Vi} be a partition of the vertex set V(Q)
and let GE be the k-complement of G with respect to the partition P. The graphs
G and GkP commute with each other if and only if the partition P satisfies the
following properties.

(i) For every i, 1 <i <k and for every two vertices u and v in V;, o-degree
of u is same as o-degree of v.

(it) For every two vertices u € V; andv € V;, 1 <4, <k andi# j,
|A| + |B| = |C| + | D|, where
A={z|zeViorzeV(G)\ (V;UV)) with z ~¢ u and x »g v},
B={z eV, |z~cuand z ~g v},
C={ylyeV;orzecV(G)\ (V;UV)) withy =c u and y ~¢ v},
D={yeVi|y~guandy~qguv}
and | X| represents the cardinality of set X .

Proof. Let the graph G and its k-complement Gf commute with each other.
By the Remark for every two vertices u and v of G, the number of GGkP
paths from u to v is same as the number of G§ G paths from u to v.

To prove that the partition satisfies conditions (i) and (ii) we consider the
following two cases.

Case (i): Vertices u and v are in the same partite set say V;, 1 < i < k. By
the definition of G}, for any vertex w in V; which is adjacent to both v and v,
there is both GG and G G paths from u to v through w. In all other possible
cases, there is neither GGkP path nor GkPG path from w to v. So, we consider
vertex w which is outside V;. If this vertex w is such that u ~g w =g v, then
there is a GGkP path from u to v and hence there exists a vertex = outside V;
such that u #g x ~¢g v which counts for G,fG path from u to v.

Since G and G¥ commute with each other, o-degree of u is same as o-degree
of v. This proves (i).

Case (ii): Suppose that u € V; and v € V}, 1 <14,5 <k, ¢ # j. Then following
are the ways of getting GG paths from u to v:
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a) corresponding to every vertex w in V; which is adjacent to both v and v in
J

G,

b) corresponding to every vertex w either in V; or in V(G) \ (V; UV;) which is

( p g y i

adjacent to v and non adjacent to v.

Similarly, we get GkP G paths from u to v in the following ways:

(a’) corresponding to every vertex w in V; which is adjacent to both u and v
in G,

(b’) corresponding to every vertex w either in V; or in V(G) \ (V; UV;) which
is adjacent to v and non adjacent to u.

Since G and G} commute with each other, by the Remark and by the
above discussion, (ii) follows. Conversely, when the condition (i) and (ii) are
satisfied, the number of GGkP paths is same as number of Gf G paths between
every two vertices v and v in G. Hence by Remark the graphs G and GE
commute with each other. O

In the following, we give an example to demonstrate the above theorem.
We cousider a graph G, a partition P of V(G) of size 2, satisfying conditions
(i) and (ii) of Theorem [2.1] Tt can be verified that A(G)A(GE) = A(GE)A(G)
by computing both the products.

Example 2.2.

Figure 1: Graphs G and G¥ satisfying A(G)A(GY) = A(GE)A(G).

In the following section we investigate the existence of a partition P of V(G)
such that G commutes with G when G is taken from certain classes of graphs.
We consider the class of trees, complete graphs, cycles and generalized wheels.
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2.1 Trees

In this section we prove that for a tree G there exists no partition P of
V(G) such that G commutes with GT, for any k, 2 < k < n.

Theorem 2.3. Let G be a tree with n vertices. Then, for any positive integer
k > 2, there exists no partition P = {V1,Va,...,Vi} of V(G) of size k, such
that G commutes with GkP .

Proof. If possible, let P = {V1,Va,...,Vi} be a partition of V(G) of size k > 2
such that G commutes with GF.

Let u be a pendant vertex and v be the vertex adjacent to v in G. Since G is
not Ky, (for G = Ky, A(GL) is a zero matrix), v is a vertex of degree at least
2.

If w and v are in the same partite set, say V;,1 < ¢ < k, then, by (i) of
Theorem every vertex adjacent to v must be in V; only. Likewise, every
vertex adjacent to any vertex in V; must lie in V;. Effectively, all the vertices
of G are in V, which is not possible, since k > 2. Therefore, u and v are in two
different partite sets say, u € V; and v € V5.

Consider a vertex w adjacent to v. If either w € V5 or w belongs to a partite
set other than V; and Vs, say V3, then there is at least one GGY path but there
is no GkPG path from v to u. Hence, by Remark it follows that all the
vertices which are adjacent to v are in V.

Let w be any vertex in Vi, w # u which is adjacent to v. Now, for any x,x # v
which is adjacent to w, either when = € Vi, € V5 or x is outside V3 U Vs, one
can show that there are different numbers of GGf and GkP G paths between
two suitably chosen vertices, which is not possible. Therefore, there is no x
adjacent to any vertex w in N(v). Which implies k¥ = 2 and the only possible
tree is the star Ki ,_1. In which case Gf is a zero matrix, and the case is
trivial. This completes the proof. O

2.2 Complete Graphs

Here we show the existence of a partition P of V(K,,) such that K,, com-
mutes with (K,,)F if and only if n is not a prime number.

Theorem 2.4. Let G be the complete graph on n vertices. Then there exists a
positive integer k > 2, and a partition P = {V1,Va,...,Vi} of V(G), such that
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G commutes with GE, if and only if n is not a prime number.

Proof. Consider the complete graph G = K, and a partition P = {V}, Vs, ...,V }
of V(G) of order k, with |V;| =n,, 1 <i<k.

Then A(G) can be viewed as,

(‘]_I)nlxnl Jn1><n2 Jﬂ1><n3 Jn1><nk

anxnl (J_I)7L2Xn2 Jngxnk

A(G) _ Jn3'><'n,1 Jn3.><n2 . . .. Jn3'><’n.k
J’I’LkX’nl J’nkX’rLQ s ..' (Ji‘[)nkxnk

with respect to the above A(G), A(GY) becomes,

(J - I)nl X1 0”1 X 12 0”1 Xng - 0n1 XN

On2><n1 (J_I)n2><n2 O7l2><nk

A(ka) = 0"3.><n1 0n3.><n2 . . . On3><mc
Onkxnl O’I’Lang (J_I)nkxnk

Then the product A(G)A(GY) and the product A(GF)A(G) are given as fol-
lows:

(J_I)7211><711 Jn1Xn2(J_I)n2xn2 Jannk(J—I)nank
P Tnzscmn (T = Dinseny (J—[)%zxnz oo Tnaxn (J = Dingxny,
AGAEE) = ; | ) | |
Tngxny (J = Dnyxns Ingexena (J = Dy xn (J*I)ikxm
(J = D)7, xm, (7= DaxmTniens o (T = Diisens T
ACPIAG) (J = Dagxna(Fnaxns) (T =120, oo (I = Dingxng Tnaxns
k = . : . .
(J_I)nankJnanl (J_I)nkxnkJnan2 (J_I)glkxnk

If the graphs G and G¥ commute, then J, sny (J—1Dngscny = (J=1)ny xcny Jng xcna-
Which implies (ng — 1)Jn; xn, = (1 — 1), xny, OF N2 = ny. Proceeding like
this n; = n; for every ¢ = 1,2, ..., k. Therefore n is a multiple of k and n has
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to be a composite number.

n
Conversely, when n is a composite number, taking — vertices in each partite
set i.e., by considering |V;| = |Vj|, for every i and j, 1 < ,j < k, and taking
the k-complement with respect to the above partition, we can retrace the steps
above to show that G’ commutes with G£. O

Remark 2.5. In paper |Manjunatha Prasad et al| (2014)), while discussing
about the graphical nature of the modulo 2 product A(G)A(H) of the adjacency
matrices of graphs G and H, authors have observed that the commutativity of
A(G) and A(H) is required for the symmetry of the product matriz A(G)A(H).
The other essential property is that for every i = 1,2,...,n, there are even
number of vertices v such that v; ~ Gug and vy ~ Hv; which guarantees the
zero diagonal.

Now, suppose that K,, and (K,)Y commute with each other. If each |Vi|,1 <
i < k is an odd integer i.e., if i-degree of each vertex is even, then we observe
that when the multiplication is taken over Za, A(G)A((G)E) is always graphical.

2.3 Cycles

In this section we show that, a partition P of V(C},) with the property that
C,, commutes with (C,,)f exists if and only if n is not a prime number.

Let C), be a cycle on n vertices vy1,va,...,v,. Let v; ~g viq41, 1 =1,2,...,n—
1, v, ~g v1. Consider the k—complement (C’n)f of C,, with respect to some
partition P = {V1,Va,...,Vi} of V(C,,) of size k > 2. From (i) of Theorem
two graphs G and ka commute if for every ¢ = 1,2,...,k, all the vertices
in V; have the same o-degree.

Therefore, for every i = 1,2,...,k, V; is either union of Kls or totally discon-
nected. In the following theorem we prove that if C,, commutes with (C,,)F,
then (V;) is totally disconnected.

Theorem 2.6. Let G = C), be a cycle on n vertices vy, vs, ..., v, With v; ~g
Viy1, ¢ = 1,2,...,n—1, v, ~g v1. Let GkP be of G with respect to some
partition P = {V1,Va,...,Vi} of V(G) of size k > 2. If G commutes with G£
then induced subgraphs (V;), i =1,2,...,k are totally disconnected.

Proof. Let G commute with G,f with respect to some partition P = {V1,Va,..., Vi }
of V(G) of size k > 2. Then we show that there is no partite set say V;,1 <
i < k, such that (V) is either a K5 or union of KJs.
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Suppose the edge (vi,v2) € V; and let ka, with respect to a partition P =
{V,Va,...,Vi} (k> 2) of V(G) commute with G.

Let both the vertices vz, v, € V5. Then from the vertex v, to v there is at
least one GGkP path. But from vy to v,, there exists no GGkP path. Therefore
vz and v, cannot be in the same partite set.

Let v3 € V5 and v,, € V3. Then from v to v,, there is a GGkP path through vg
and in order to get a GGkP path from v,, to vy, the vertex v,,_; must be either
in V5 or in V3 or lies outside V; U V5 U V3, say V.

In all of the above three cases, there are two GGY paths and one GI'G path
from v, to vy, which by RemarKI.4] is not possible.

Hence, when G commutes with GE, (V;) is totally disconnected for every i =
1,2,...,k. O

The following theorem gives all possible values of n and k£ and the partition P
of V(G), such that G = C,, commutes with Gf.

Theorem 2.7. Let G = C,, be a cycle on n vertices vy,va, ..., v, with v; ~g
viy1, © = 1,2,...,n =1, v, ~g v1, and let GkP be k-complement of G with
respect to some partition P = {V1,Va,...,Vi} of V(G) of size k > 2. G
commutes with GE if and only if each (V;) is totally disconnected and vig1; €

Vi, lgigkandOﬁlS%—l,nisamultipleofk.

Proof. From the Theorem if G commutes with G¥, then (V;) is totally
disconnected for every i =1,2,..., k. Let v; € V1, vy € V5.

Suppose vs belong to Vi, then v,, belong to either V5 or V(G) \ (V4 U V3), say
v, € V3. The vertex v, € V5 for, if it is in V3, then from v, to vy there is a
GG,}CD path but there is no GG,iD path from vy to v;.

Now the vertex v,_1 € Vi or V3. But if v,y € V3, then from vy to v,_1
there are two GGkP paths, but from v, _1 to vy there is at most one GGkP path.
Therefore v, _1 € V;. Proceeding like this, all vertices with odd index belong
to V7 and remaining vertices belong to V5. Therefore when v,, € V5, k = 2 and
n is a multiple of 2.

Suppose v3 € V3 and v, € V3, then the vertex vy can belong to V; or V5 or
outside V; U Vo U V3, say Vy .
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If vy € V4 or V5, then from w3 to vy there is a GGkP path through vy, but from
v1 to v3 there is no GG,f path. Therefore vy € V7.

Similarly we can prove that v,_1,vs € V5 and so on. Therefore, v,,,v3 € V3 =
k = 3 and n is a multiple of 3. The vertices vy, € V;,1 <i <3, 0<1 < %—1.

Now suppose the vertex v; € V;,1 <1¢ < r, and v, € V,., then we prove that
the vertex v,4; € V;,1 <j <.

Suppose vy4; ¢ V;,1 < j < r, then one can show that there are different
numbers of GGE and Gf' G paths between two suitably chosen vertices, which
is not possible.

Continuing like this, we get that the vertex vig4; € Vi, 1 <i<kand 0 <[ <
% — 1 and n is a multiple of k.

Conversely, let (V;) be totally disconnected with vjpy; € Vi, 1 <4 < k and
n

0<I< T 1. Then in G¥ with respect to the partition P = {Vq,Va,..., Vi },

a vertex v; is non adjacent to v;_1, V41, Vkti, V2k+i, - - - , Vik+i and adjacent to

all the remaining vertices. Since there are T vertices in every partite set GkP is

n
regular with regularity n — 2 — —.

k

To show that A(G) and A(GE) commute with each other, we show that both
of them are circulant. Since G is a cycle A(G) is circulant.

Consider i*" row of A(GE). The zero entries in this row are at the positions
(4,0 —1),(i,i + 1), (i, k +4), (¢,2k + i), ..., (i,lk + 7). For all these pairs (i, j),
j—i+1are given by, 0,2,k + 1,2k +1,...,lk + 1. The first row of A(GL) has
zero entries at exactly the above column positions. Hence we get, (A(GE));; =
(A(GE))1,j—is1 for every i and j. Therefore, by definition, A(GY) is circulant.
Since every two circulant matrices commute with each other, G commutes with
ar. 0

Remark 2.8. In paper |Manjunatha Prasad et al| (2013), while discussing
about the graphical nature of the product A(G)A(H) of the adjacency matrices
of graphs G and H, authors have observed that the commutativity of A(G) and
A(H) is required for the symmetry of the product matriz A(G)A(H). The other
two essential properties are as follows. The graph H should be a subgraph of G
which guarantees the zero diagonal and between every two vertices v; and vj,
there can be at most one GH path from v; to v; and when there is one GH path
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rom v; to v; then there is exactly one ath from v; to v;, which guarantees
fi to v; then there i tly GH path fi j to v;, which g t
that every entry is either 0 or 1.

Now, suppose that A(G) and A(GY) commute with each other. Since G is a
cycle and degree of any vertez is two in G, between any two vertices there can
be at most two GGE paths. Thus, any entry of A(G)A(GY) is 0,1 or 2. And
also, since every set V;, 1 <i <k, is independent, the diagonal of A(G)A(G})
has all entries equal to zero. Hence if there is no entry which is two, then
A(G)A(GE) is graphical.

Therefore if multiplication is taken over Zs, then A(G)A(GY) is always graph-
ical.

When k = 2 and |V;| > 4,1 < i < k, then at least one entry in A(G)A(GE)
is 2. Similarly, if k > 3 and |V;] > 2 1 < i < k, then at least one entry
in A(G)A(GE) is 2. In all such cases, with respect to usual multiplication
A(G)A(GE) is not graphical.

Now consider the remaining cases.

Case (i): When k > 3 and |V;| = 1,1 < i < k. In this case, k will be equal to
n and G,f is same as G and the corresponding results are well settled in paper
Manjunatha Prasad et al.| (2015).

Case (ii): When k=2 and |V;| < 3,1 < i < k. There are 2 cases. One, when
k= 2,|Vi| = |V3] = 3, in which case the graph G is Cs and G¥ is a 1-regular
graph. And A(G)A(GY) is graphical with realizing graph of product is the David
graph.

The other case, when k = 2 and |V1| = |Va| = 2 corresponds to the cycle Cy

and the corresponding G¥ is totally disconnected. Therefore A(GE) is the zero
matriz of order four, which is a trivial case.
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In the following, we give an example to demonstrate the above remark. We
consider a graph G = Cy, G¥ with respect to a partition P of V(G) of size 3,
satisfying the conditions given in Theorem and the graph T', where A(T") =
A(G)A(GE)(mod 2). Tt can be verified that A(G)A(GY)(mod 2) = A(T) by
computing the product.

Example 2.9.

v, Vg

Vs

Vg Yo

Figure 2: Graphs G = Cy, G¥ and ' with A(T) = A(G)A(GE)(mod 2).

Remark 2.10. Let G, H and T" be the graphs defined on the same set of ver-
tices. According to Theorem 7 of |Manjunatha Prasad et al.| (2015), when
A(G)A(H) = A(T'), degree of a wvertex in the product graph T' is given by
degrv; = deggv;.deggv;. Therefore when C, commutes with (C’n)f, rOW SUM
of the product A(Cy,)A((Cn)E) is equal to 2(n — % —2).

2.4 Generalized Wheels

The Generalized Wheel W, ,, = K,, + C,, has m central vertices (vertices of
K,,) and n peripheral vertices (vertices of C},). Every central vertex is adjacent
to all the peripheral vertices.

In this section, we show the existence of a partition P of size k of V/(W,,.),

with the property that W,, , commutes with (Wmn)kp .

Consider the generalized wheel G = W, ,,. Let v1,v2,...,v, be the n vertices
on the cycle with v; ~g vi41,1 <i <n—1, v, ~g v1 and let v],v},..., v,
be the m central vertices. Partition the n vertices on the cycle into [ par-
tite sets {V1,Va,...,V;} and m central vertices into r = k — [ partite sets
Vi, Viga, oo Vi = Vi Let [Vigg| = my 1 <i <r =k — [ with mq +mg +
oo+ me =m.

By considering central vertices in the beginning and the vertices on the cycle
afterwards, we can view A(W,, ) and A((Wp, »)E), as follows:
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— O7rL><m men
A(Wm,n) - ( JnXm A(Cﬂ)n Xn )7
Py r Jmxm mxmn

where A(HTP )mxm is the adjacency matrix of r-complement of m central ver-
tices with respect to the r partition and A((Cy,)f),xn is the adjacency matrix

of [-complement of the n vertices on the cycle with respect to the [ partition.

Theorem 2.11. Let vi,v9,...,v, be the n vertices on the cycle C,, and let

Vi, VY, ..., vl be the m central vertices of Wy, . Let the n vertices on the

r¥m
cycle be partitioned into | partite sets and m central vertices be partitioned into
r = k — | partite sets. The graphs Wy, and (W, ,)E with respect to the
partition P = {V1,Va, ..., Vi}, commute if and only if the graph W, ,, and the

partition P satisfies the following properties;

(i) each (V;) ;1 <i <k is totally disconnected with vy; € V;, 1 <i <1 and

ogtg?—l and n is a multiple of I,
1
(i) mi:r_l(n—%—2), where |[Vig;| =m; , 1 <i<r.

Proof. The product A(Wy, ) A(Winn)E) and A(Win)E) AW, ) are given
as follows;

Omxm JanA<(Cn)P)n><n
AW ) A(Wonn)i0) = < Toim A Y AC)r n A(C) s >

( Omxm A(Hf)mxmt]mxn )

From the above, we get, when W, , commutes with (Wmm)kp , Cy, must com-
mute with (C,,)f. Therefore, by Theorem it follows that (V;) is totally

disconnected 1 < i <!l and vy €V; ,0<t < ? — 1 and n is a multiple of [.

A((Wm,n)kp)A(Wm,n) =

The graph (C,,)F is a regular with regularity n — ? - 2.

Om1><m1 Jm1><m2 L JM1><mr
Im 0 J,
2 XMy ma2 Xma e m2 XMy
Now A(HF) =
er><m1 erxmg L Omerr
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(ma+mg+ ...+ M)y xn
, (m14+mz+ ...+ m)Jmyxn
A(Hr )mxmt]mxn = : P

(ml +ma+ ... +mr—1)er><n
n
and JanA((C'n)lP)an =(n— T~ 2)mxn-

When W, ,, commutes with (Wmm)kp ,
L,
l

Which implies, m; =m; 1 < <r,and m; = ——(n —

—2).
r—1 )

Conversely, if the partition P of V (W, ,) satisfies both the conditions of
the theorem, then we can retrace the steps above to show that W, ,, commutes
with (W,,Lm)kp. O

We observe that for a given value of n, there exist many values of m and
vice versa such that W, ,, commutes with (Wm’n)kP . We show the above fact in
the following two examples. In the Example we consider n = 8 and find
all possible values of m and the corresponding graphs W, ,. And in Example
we consider m = 4 and find all possible values of n and the corresponding
graphs W, .

Example 2.12. Forn =8, as n is a multiple of [, I can take the values 2 or
4.

1
Consider the case | = 2. Then m; = ] (2) implies that r can take the values
r—

either 2 or 3. Therefore when r = 2,m = 4 results in Wy g with k = 4. And
r=3,m =3 results in W3 g with k = 5.
1
Consider the case | = 4. Then m; = —1(4) and hence r can take the values
r

2,8 0or 5. Whenr =2, m = 8 results in VI73,8 withk = 6. And whenr =3,m =6
results in W g with k =7. Finally, r = 5,m = 5 results in W5 g with k =9.

Example 2.13. When m = 4, r can take the values 2 or 4.
Consider the case r=2. Then m; =2 andl = Lll Therefore n can take the
n—

values either 5,6 or 8.
When n =5, | = 5 results in Wy 5, with k =7. Whenn =6, | = 3 results in
Wae with k =5. And when n = 8,1 = 2 results in Wy g, with k = 4.

Consider the case r = 4. Then m; =1 and l = L5 Therefore n can take
n

the values 6 or 10. -
When n = 6, I = 6 results in Wy, with k = 10. And when n = 10, | = 2
results in Wy 10 with k = 6.
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Remark 2.14. Let G = W, ,,. Suppose that G and GY commute with each
other, then we observe that, by Remark[2.5, when the multiplication is taken
over Zo, A(G)A(GE) is always graphical.

3. Commuting decomposition of Complete
k-partite graphs

A decomposition of a graph G is a collection of subgraphs Hy, Ho, ..., Hy,

that partitions the edges of G. That is, for all 4 and j, |J H; = G and
1<i<k

E(H;)N E(Hj) =@ for i # j.

This section deals with commuting decomposition of a complete k-partite
graph K, pn,,..n, into a subgraph and its k-complement. Theorem @ ex-
plains the commuting decomposition of K, n, .. n, into a cycle C), and its
k-complement (Cn)kp . Theorem gives the commuting decomposition of
Ky, ns,....n, into a generalized wheel Wy, ;,, and its k-complement (Wmn)kp In
both the cases, we consider the partition P to be the k-partition of the complete

k-partite graph Ky, n,,..n

.....

.
Theorem 3.1. Let G be a regular complete k-partite graph Ky, n,....n,, where
n; = % for i =1,2,... k with respect to a partition P = {V1,Va,...,Vi} of
V(G). Then the graph G is decomposable into two commuting subgraphs of G,

one of which is Cy, and the other one is its k-complement with respect to the
same partition P = {V1,Va, ..., Vi }.

Proof. Let V(G) = {v1,va,...,v,} be the vertices of G. Let the partition
P = {V1,Va,...,Vi} of the regular k-partite graph be taken as follows. The

vertices vig+; € Vi, 1 <1<k, 0 <1 < n_ 1. Then observe that the graph

G = Ky, ns,...n, has a Hamiltonian cycle C,, on the vertices vy, ve, ..., v, taken
in that order. Let this subgraph be denoted by H;. Remove the edges of C,
from G. Let the resulting graph be Hy. Consider (C,)f with respect to the
same partition P = {V1, Va, ..., Vi }. Two vertices in (C,,)E are adjacent if and
only if they are adjacent in Hs. Hence (C,,)F is same as Hy. Which implies
that Ky, ny,...ny = H1UHy = Cp U (Cn)kp with E(H,) N E(Hy) = ¢. Hence
H, = C, and Hy = (Cn)kP form a decomposition of K, n,, .. n,. From the
Theorem (Cn)f is a circulant graph. Because C,, is also circulant, C,
commutes with (C,,)f. Therefore C,,, (Cy,)f form a commuting decomposition
of G. O
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Theorem 3.2. Let G be a complete k-partite graph Ky ng,ong i s iigrs
having the vertex set {vy,va, ..., Un, v}, 05, ... vl } with respect to the partition
P={Vi,Va,...,Vi.Viers ..., Visr_r} of V(G), where n; = % fori=1,2,...,1
—l(n - ? —2) fori =1+1,1+2,....,k. Then the graph G
is decomposable into two commuting subgraphs of G, one of which is Wy, p
and the other one is its k-complement with respect to the same partition P =

W, Va,...,Vi}.

and n; =

Proof. Let the vertices vy, vs,...,v, be such that the vertices vy,4; € V;,1 <
n
i <1, 0 <r < — —1. And the vertices v{,v5,...,v), belong to the remaining

partite sets {Vi41, Viqa,..., Vi}. Define the subgraph H; of G as follows. H;
is a spanning subgraph of G with E(H;) consisting of a cycle with vertices
V1,2, ..., U, in that order and all the edges joining each v} 1 < i < m to every
vertex on the above cycle. Observe that the subgraph Hj is a generalized wheel
Winn-

Remove the edges of the subgraph H; from G. Let the resulting graph be Ho.
Consider (W, ,)F with respect to the same partition P = {V3,Va,...,Vi}.
Two vertices in (W, ,)f are adjacent if and only if they are adjacent in Hs.
Hence (Wm,n)f: is same as Hy. Which implies that Ky, n,,..n, = H1 U Hy =
Won U (Wmn),f with E(H;) N E(Hz) = ¢. Hence Hy = Wy, ,, and Hy =
(Wmn)E form a decomposition of K, . n,.. From the Theorem W
commutes with (W, ). Therefore Wy, 1, (Win.n)E form a commuting decom-
position of G. O

In |Akbari et al.| (2009), authors have obtained all positive integral values
of n for which the graph K, , is decomposable into commuting Hamiltonian

n
cycles. We observe that the commuting decomposition of Ky, n,.... nps i = %
fori=1,2,...,k into a cycle C,, and its k-complement becomes a commuting

decomposition of two Hamiltonian cycles only when (Cn),f = (),. When this is
true, the corresponding vertices have same degree in C,, and (C,,)F. Since C),

is regular with regularity 2 and (Cn)kl,D is regular with regularity (n — % —2),

we get n — % — 2 = 2. Which gives either k = 2,n = 8 and the graph is Ky 4
or k = 5,n =5 and the graph is Ky 1,111 or k = 3,n = 6 and the graph is
Kis2. But when k = 3,n = 6, (C,,)F is union of two C%s. Therefore Ky 4
and K 1,1,1,1 are the only graphs that can be decomposed into two commuting

adyds

Hamiltonian cycles in terms of C,, and its k-complement (C),)F.
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4. Commutativity of a graph G and its
k(i1)-complement

In this section we derive the conditions to be satisfied by the partition P
of V(G) in order that the graphs G and ka(i) commute with each other. We
state the result in the form of a theorem, the proof of which is similar to that
of Theorem [2.I] and hence is omitted.

Theorem 4.1. Let P = {V1,Va,..., Vi }(k > 2) be a partition of the vertex set
V(G) and let ka(i) be the k(i)-complement of G with respect to the partition P.

The graphs G and kai commute with each other, if and only if the partition
P satisfies the following properties.

(i) For every i, 1 < i < k and for every two vertices u and v in V;, the
i-degree of u is same as the i-degree of v.

(it) For every two vertices u € V; andv € V;, 1 <4, <k andi# j,
|A| +|B| = |C| + |D|, where
A={z eV, |z ~gu and x ~g v},
B={zeV;|z~cuand z =g v},
C={yeVj|y~cuandy~cg v},
D={yecVi|y»guandy~qguv}
and | X| represents the cardinality of set X.

In the following, we give an example to demonstrate the above theorem.
We cousider a graph G, a partition P of V(G) of size 2, satisfying conditions

(i) and (ii) of It can be verified that A(G)A(G;i)

) = A(G3;))A(G) by
computing both the products (Figure [3]).

Example 4.2.

Figure 3: Graphs G and Gg(i)
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In the following section we investigate the existence of a partition P of
V(G) such that G commutes with G, ;) when G is taken from certain classes
of graphs. We consider the classes of complete graphs, cycles and generalized
wheels.

4.1 Complete Graphs

Here we show the existence of a partition P of V(K,,) such that K,, com-
mutes with (Kn)kp(i) if and only if n is not a prime number.

Theorem 4.3. Let G be the complete graph on n vertices. Then there exists a
positive integer k > 2, and a partition P = {V1,Va,...,Vi} of V(G), such that
G commutes with Gf(i), if and only if n is not a prime number.

Proof. Consider the complete graph G = K, and a partition P = {V;,Va,..., Vi }
of V(G) with |V;| =mn,, 1 <i<k.
Then A(G) can be viewed as,

(J - I)nl Xniy Jn1 Xno J’I’Ll Xns L J’I’Ll XN

Ingxna (J = Dnyxcns Ty xn
A | Tngsns T S

Jnkxnl Jnkxng e ..' (JﬁI)nkxnk
With respect to the above A(G), A(ka(i)) becomes,

O’I’L1 Xny J’I’Ll Xno J’I’Ll Xns3 e J’I’Ll XN

Jnaxn:  Ongxng v Ingxn
A(GP ) _ J7L3><n1 Jn3><n2 Jn3><nk

Jnk Xni Jnk X2 e B ° Onkxnk

Then the product A(G)A(G,f(i)) and the product A(Gf(i))A(G) are given as
follows;

InyxngIngxny T+ JIngxng Ingxng (J = DnyxnyInyxng T InyxngIngxng T+ Inyxng Iny,
A(GYA(GP _ (J = DngxngIngxny T+ JIngxnyg Ing xng JngxnyIngxng T JIngxnzIngxng T+ Ingxny Iny x
(GVA(G ()
InyxngIngxny T+ JIngxng Ingxng Inyxng (V= Dngxng ¥ InyxngIngxng -+ Inyxny Iny,
P Jngxny (0 = Dnyxng + -+ Ingxng Ing xng JngxnyInyxng T JIngxnzIngxng T+ Ingxny Iny x
A(G ) AG) =

If the graphs G and ka(i) commute then, Jon, xns (J—Dnyxns = (J—1)ny xny ng X7g-
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Which implies (ng — 1)Jn, xn, = (1 — 1)Jn, xny, OF ng = ny. Proceeding like
this, n; = n; for every i and j, 1 <14, j < k. Therefore n is a multiple of k¥ and
n has to be a composite number.

n
Conversely, if n is a composite number, taking % vertices in each partite set
i.e., by considering |V;| = |V;| for every i and j, 1 < i,j < k, and taking the
k-complement with respect to the above partition, we can retrace the steps
above to show that G commutes with ka(i). O

Remark 4.4. Let G = K,. Suppose G and G,f(i) commute with each other
and if o-degree of all the vertices is an even integer, then by Remark[2.5, if the
multiplication is taken over Zs, then A(G)A(Gf(i)) is always graphical.

4.2 Cycles

In this section we show that, a partition P of V(C},) with the property that
C), commutes with (Cn)kp(i) exists if and only if » is not a prime number.
Let C), be a cycle on n vertices v1,va,...,0,. Let v; ~g v41, 1 =1,2,...,n—
1, v, ~g v1.
Consider the k(7)—complement (C’n)f(i) of C,, with respect to some partition
P = {V1,Va,...,Vi} of V(C,) of size k > 2. From (i) of Theorem [£.1] two
graphs G and Gf(i) commute if for every ¢ = 1,2,...,k, all the vertices in V;
have the same i-degree.
Therefore when C),, commutes with (Cn)kp(i), the graph induced by V; is either
union of Kjs or totally disconnected.
In the following theorem we prove that when C,, commutes with (C’n)f(i), then
(V;) is totally disconnected. The proof of this theorem is similar to that of
Theorem and hence is omitted.

Theorem 4.5. Let G = C,, be a cycle on n vertices vy,va, ..., v, with v; ~g
Vit1, ©=1,2,....,n—1, v, ~g v1. Let Gf(i) be k(i)-complement of G with
respect to some partition P = {V1,Va,...,Vi} of V(G) of size k > 2. If G
commutes with Gf(i) then induced subgraphs (V;), i = 1,2,...,k are totally
disconnected.

The following theorem gives all possible values of n and k and the partition
P of V(G), such that G = C,, commutes with ka(l.). The proof of this theorem
is similar to that of Theorem [2.7} and hence is omitted.

Theorem 4.6. Let G = C,, be a cycle on n vertices vy,va, ..., v, with v; ~g
Vir1, & = 1,2,....n — 1, v, ~g v, and let ka(i) be k(i)-complement of G
with respect to some partition P = {V1,Va,...,Vi} of V(G) of size k > 2.
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G commutes with Gf(i) if and only if each (V;) is totally disconnected and
Vik+i € Vi, 1 <1<k andoglgg—l,nisamultiple of k.

Remark 4.7. Let G = C,,. Suppose G and kai commute with each other,
then we observe by Remark [2.5] that, when the mul)tz'plication is taken over Zs,
A(G)A(ka(i)) is always graphical.

4.3 Generalized Wheels

In this section, we show the existence of a partition P of V(W,,.,) of size
k, with the property that W,, , = K, + C,, commutes with (Wm,n)kp(i).
Let vy, v9,...,v, be the n vertices on the cycle with v; ~g v;41,1 <i<n—1,
v, ~q v1 and let vi, v, ..., 0], be the m central vertices. Partition the n ver-
tices on the cycle into [ partite sets {V1,Va,...,V;} and m central vertices into
r = k — [ partite sets {Vi41, Vigo, ..., Vigr = Vi }. Let [Vigil=m; 1 <i<r
with mqy +mo + ... +m, = m.
By considering central vertices in the beginning and the vertices on the cycle
afterwards, we can view A(W,,,) and (A(Wm,n))kp(i), as follows;

_ Ome men P _ A(Hﬁl))mxm men
A(Wm,n) - ( Jnxm A(On)n n ) 5 A((Wm,n)k(i)) - ( Jnxm A((Cn)l]zi))nxn 9

where A(H TP(Z.))me is the adjacency matrix of r(i)-complement of m central
vertices with respect to the r partition and (A(C’n)f()i))nxn is the adjacency
matrix of 1(i)-complement of the vertices on n cycle with respect to the I par-
tition.

Theorem 4.8. Let vy1,vs,...,v, be the n vertices on the cycle C, and let

Vi, V5, ..., vl be the m central vertices of Wi, Let the cycle vertices be parti-

rYm
tioned into | partite set and m central vertices be partitioned into r partite sets
so that l +r = k. The graphs Wy, , and (Wmm)kp(i) commutes if and only if

the graph W, », and the partition satisfies the following properties;

(i) each (V;) ;1 <1i <k is totally disconnected with vy; € V;, 1 <i <1 and
0<t< ? — 1 and n is a multiple of I.

(i) m; = %, where |Vig| =m; ;1 <i<r.

Proof. The product A(Won) A(Winn)isy) and A(Winn) i) A(Wi,,) are
given as follows;
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JanJnXm m><n ((Cn)l( )n><n
AW n)A mon 2
(W ) AW )i ( s AGHE Ymxom + A(Co)usnnsm dnemmxn + A(Cu)n sn A((Ca) i)

AW P >< X r(i) X X X X
(( ’ )k() ( 1(1) n XanXm JnXmeXn +A((C )1(1))71 XnA(On)n Xn

As Wp,n commutes with (Wm,n)k(i)7 Cy must commute with (Cn)z@y Therefore from
Theorem , (Vi), 1 <4 <1 is totally disconnected with vy4; € Vi ,0 <t < ? —1

and n is a multiple of . Also (Cn)ﬁi) is regular graph with regularity ? + 1.

(JfI)mlxml 0m1><m2 Omlxmr
0m2><m1 (J - I)mngg cee 0m2><m7,
Now A( 7‘(2 ) =
Oy s Omsims — oe (T = Doy s,
(m1 = 1)Jmyxn (m1 + 1)Jmy xn
(m2 - 1)Jm2><n (m2 + ].)szx”
. + 2J”m)(n - . )
(mr — 1) T, xn (mr + 1) I xn

and JunxnA((Ca)fy)nn = (F + 1) Jmscn

As Wp,,n commutes with (Wm,n)kp(i),

A(H ) mxndmxn + JmxnA(Cn)nxn = Jmxn((A(Cn))isy )nxn
Which implies m; = m; = % 1<i<r

Conversely, if W,,,, satisfies both the conditions of the theorem with respect to
the k-complement of the partition P, then we can retrace the steps above to show
that Wiy, commutes with (Wm,n),f(i). O

As in Example and we observe that for a given value of n, there
exists more than one value of m and vice versa such that W, ,, commutes with

(Win,n) sy

Remark 4.9. Suppose A(W,, ) and A((Wm,n)kp(i)) commute with each other
and n is even. Then we observe by Remark [2.5, that when the multiplication
is taken over Zs, A(Wm’n)A((Wm,n)f(i)) is always graphical.
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